Flax (Linum usitatissimum) is a crop plant valued for its oil and fiber. Unfortunately, large losses in cultivation of this plant are caused by fungal infections, with Fusarium oxysporum being one of its most dangerous pathogens. Among the plant's defense strategies, changes in the expression of genes of the shikimate/phenylpropanoid/benzoate pathway and thus in phenolic contents occur. Among the benzoates, salicylic acid, and its methylated form methyl salicylate play an important role in regulating plants' response to stress conditions. Upon treatment of flax plants with the fungus we found that methyl salicylate content increased (4.8-fold of the control) and the expression profiles of the analyzed genes suggest that it is produced most likely from cinnamic acid, through the β-oxidative route. At the same time activation of some genes involved in lignin and flavonoid biosynthesis was observed. We suggest that increased methyl salicylate biosynthesis during flax response to F. oxysporum infection may be associated with phenylpropanoid pathway activation.
Inflammation is the basis of many diseases, with chronic wounds amongst them, limiting cell proliferation and tissue regeneration. Our previous preclinical study of flax fiber applied as a wound dressing and analysis of its components impact on the fibroblast transcriptome suggested flax fiber hydrophobic extract use as an anti-inflammatory and wound healing preparation. The extract contains cannabidiol (CBD), phytosterols, and unsaturated fatty acids, showing great promise in wound healing. In in vitro proliferation and wound closure tests the extract activated cell migration and proliferation. The activity of matrix metalloproteinases in skin cells was increased, suggesting activation of extracellular components remodeling. The expression of cytokines was diminished by the extract in a cannabidiol-dependent manner, but β-sitosterol can act synergistically with CBD in inflammation inhibition. Extracellular matrix related genes were also analyzed, considering their importance in further stages of wound healing. The extract activated skin cell matrix remodeling, but the changes were only partially cannabidiol- and β-sitosterol-dependent. The possible role of fatty acids also present in the extract is suggested. The study shows the hydrophobic flax fiber components as wound healing activators, with anti-inflammatory cannabidiol acting in synergy with sterols, and migration and proliferation promoting agents, some of which still require experimental identification.
Catecholamines are biogenic aromatic amines common among both animals and plants. In animals, they are synthesized via tyrosine hydroxylation, while both hydroxylation or decarboxylation of tyrosine are possible in plants, depending on the species, though no tyrosine hydroxylase—a counterpart of the animal enzyme—has been identified yet. It is known that in potato plants, it is the decarboxylation of tyrosine that leads to catecholamine production. In this paper, we present the effects of the induction of an alternative route of catecholamine production by introducing the tyrosine hydroxylase gene from rat. We demonstrate that an animal system can be used by the plant. However, it does not function to synthesize catecholamines. Instead, it leads to elevated reactive oxygen species content and a constant stress condition in the plant, which responds with elevated antioxidant levels and improved resistance to infection.
Chinese hamster pulmonary fibroblasts (V79 cells) pre-treated with flax fabrics derived from non-modified or genetically engineered flax fibres and treated with HO revealed a markedly lower level of intracellular reactive oxygen species (ROS) than control, non-pre-treated cells. The fabrics were prepared from fibres derived from two kinds of transgenic plants: W92 plants, which overproduce flavonoids, and M type plants, which produce hydroxybutyrate polymer in their vascular bundles and thus in fibres. Incubating the V79 cells with the flax fabrics prior to HO treatment also reduced the amount of DNA damage, as established using the comet assay (also known as alkaline single-cell gel electrophoresis) and pulsed-field electrophoresis of intact cellular DNA. Selected gene expression analysis revealed the activator impact of fabrics on the apoptotic (BCL2 family, caspases) gene expression. This promoting activity was also detected for histone acetyltransferase (HAT; MYST2) gene expression. The flax fabric derived from both GM flax plants exhibited a protective effect against oxidative stress and ROS-mediated genotoxic damage, but the W92 fabric was the strongest. It is thus suggested that these fabrics might be useful as a basis for new biomedical products (e.g. wound dressings) that actively protect cells against inflammation and degeneration.
Catecholamines are biogenic aromatic amines common among both animals and plants. In animals they are synthesized via tyrosine hydroxylation, while in plants, both hydroxylation or decarboxylation of tyrosine are possible, depending on the species, though no tyrosine hydroxylase – a counterpart of animal enzyme has been identified yet. It is known that in potato plants it is the decarboxylation of tyrosine that leads to catecholamine production. In this paper we present the effects of induction of an alternative route of catecholamine production by introducing tyrosine hydroxylase gene from rat. We demonstrate that an animal system can be used by the plant, however, it does not function to synthesize catecholamines. Instead it leads to elevated reactive oxygen species content and constant stress condition to the plant which responds with elevated antioxidant level and further with improved resistance to infection.One sentence summaryIntroduction of rat tyrosine hydroxylase gene to potato disturbs catecholamine synthesis, causes oxidative stress and activates antioxidant response.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.