NiFe films with a composition gradient are of particular interest from the point of view of fundamental science and practical applications. Such gradient magnetic structures may exhibit unique functional properties useful for sensory applications and beyond. The issue surrounds the anomaly concerning the compositional gradient formed near the substrate in electrolytically deposited binary and ternary iron-containing alloys, which has not previously been clearly explained. In this work, light is shed on this issue, and a clear relationship is found between the structure and surface properties of the substrate, the initially formed NiFe layers and the film composition gradient.
The effect of microstructure on the efficiency of shielding or shunting of the magnetic flux by permalloy shields was investigated in the present work. For this purpose, the FeNi shielding coatings with different grain structures were obtained using stationary and pulsed electrodeposition. The coatings’ composition, crystal structure, surface microstructure, magnetic domain structure, and shielding efficiency were studied. It has been shown that coatings with 0.2–0.6 µm grains have a disordered domain structure. Consequently, a higher value of the shielding efficiency was achieved, but the working range was too limited. The reason for this is probably the hindered movement of the domain boundaries. Samples with nanosized grains have an ordered two-domain magnetic structure with a permissible partial transition to a superparamagnetic state in regions with a grain size of less than 100 nm. The ordered magnetic structure, the small size of the domain, and the coexistence of ferromagnetic and superparamagnetic regions, although they reduce the maximum value of the shielding efficiency, significantly expand the working range in the nanostructured permalloy shielding coatings. As a result, a dependence between the grain and domain structure and the efficiency of magnetostatic shielding was found.
The mechanism of the film surface development was considered from the point of view of saccharin adsorption and its action as an inhibitor of vertical grain growth during direct, pulse and pulse reverse current modes.
This study announces the anomalous phase separation in CoNiP alloy electroplating. The observed phenomenon of the formation of magnetic bubbles was described for the first time for this triple CoNiP system. This study briefly covers all stages of magnetic bubble formation, starting from the formation of an amorphous phosphor-rich sublayer, followed by nucleation centers, and finally cobalt-rich bubbles. An explanation for the anomalous mechanism of bubble formation was found in the effects of additives and the phenomena of depolarization and superpolarization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.