methanol is an important platform molecule for chemical synthesis and its high energy density also renders it a good candidate as a cleaner transportation fuel. At present, methanol is manufactured from natural gas via the indirect syn-gas route. Here we show that ethylene glycol, a versatile chemical derived from biomass or fossil fuels, can be directly converted to methanol in hydrogen with high selectivity over a Pd/Fe 2 o 3 co-precipitated catalyst. This opens up a possibility for diversification in natural resources for energy-starved countries. The working catalyst contains extremely small 'PdFe' clusters and metal adatoms on defective iron oxide to give the required metal-support interaction for the novel synthesis.
We report a new Pd@Zn core–shell catalyst that offers a significantly higher kinetic barrier to CO/H2O formation in CO2 hydrogenation but facilitates CH3OH production at below 2 MPa with CH3OH selectivity at 70% as compared to 10% over Cu catalysts.
Mo/H‐ZSM‐5 has been studied using a combination of operando X‐ray absorption spectroscopy and High Resolution Powder Diffraction in order to study the evolution of Mo species and their location within the zeolite pores. The results indicate that after calcination the majority of the species present are isolated Mo‐oxo species, attached to the zeolite framework at the straight channels. During reaction, Mo is first partially carburized to intermediate MoCxOy species. At longer reaction times Mo fully carburizes detaching from the zeolite and aggregates forming initial Mo1.6C3 clusters; this is coincident with maximum benzene production. The Mo1.6C3 clusters are then observed to grow, predominantly on the outer zeolite surface and this appears to be the primary cause of catalyst deactivation. The deactivation is not only due to a decrease in the amount of active Mo surface but also due to a loss in shape‐selectivity which leads to an increased carbon deposition at the outer shell of the zeolite crystals and eventually to pore blockage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.