Gene therapy applications of retroviral vectors derived from C-type retroviruses have been limited to introducing genes into dividing target cells. Here, we report genetically engineered C-type retroviral vectors derived from spleen necrosis virus (SNV), which are capable of infecting nondividing cells. This has been achieved by introducing a nuclear localization signal (NLS) sequence into the matrix protein (MA) of SNV by site-directed mutagenesis. This increased the efficiency of infecting nondividing cells and was sufficient to endow the virus with the capability to efficiently infect growth-arrested human T lymphocytes and quiescent primary monocyte-derived macrophages. We demonstrate that this vector actively penetrates the nucleus of a target cell, and has potential use as a gene therapy vector to transfer genes into nondividing cells.
The method of delivering a therapeutic gene into a patient is still one of the major obstacles towards successful human gene therapy. Here we describe a novel gene delivery approach using TheraCyte immunoisolation devices. Retroviral vector producing cells, derived from the avian retrovirus spleen necrosis virus, SNV, were encapsulated in TheraCyte devices and tested for the release of retroviral vectors. In vitro experiments show that such devices release infectious retroviral vectors into the tissue culture medium for up to 4 months. When such devices were implanted subcutaneously in SCID mice, infectious virus was released into the blood stream. There, the vectors were transported to and infected tumors, which had been induced by subcutaneous injection of tissue culture cells. Thus, this novel concept of a continuous, long-term gene delivery may constitute an attractive approach for future in vivo human gene therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.