We describe here an application of the practical, simple, and reliable approach for the determination of the absolute configuration of sterically demanding tert/tert vic-diols. According to this method, it is only necessary to mix dimolybdenum tetraacteate and a chiral diol in DMSO and record the CD spectra in the 250-650 nm spectral range. From the sign of the CD bands occurring at around 310, 350, and 400 nm, it is possible to establish the chirality of the diol unit expressed by the sign of the O-C-C-O torsion angle. Because the preferred conformation of the diol in the formed complex is known, we are able to determine the absolute configuration of the carbon atoms in the diol subunit even in flexible tert/tert vic-diols.
Alopecia is caused by a variety of factors which affect the hair cycle and decrease stem cell activity and hair follicle regeneration capability. This process causes lower self-acceptance, which may result in depression and anxiety. However, an early onset of androgenic alopecia is associated with an increased incidence of the metabolic syndrome and an increased risk of the cardiac ischaemic disease. The ubiquity of alopecia provides an encouragement to seek new, more effective therapies aimed at hair follicle regeneration and neoregeneration. We know that stem cells can be used to regenerate hair in several therapeutic strategies: reversing the pathological mechanisms which contribute to hair loss, regeneration of complete hair follicles from their parts, and neogenesis of hair follicles from a stem cell culture with isolated cells or tissue engineering. Hair transplant has become a conventional treatment technique in androgenic alopecia (micrografts). Although an autologous transplant is regarded as the gold standard, its usability is limited, because of both a limited amount of material and a reduced viability of cells obtained in this way. The new therapeutic options are adipose-derived stem cells and stem cells from Wharton's jelly. They seem an ideal cell population for use in regenerative medicine because of the absence of immunogenic properties and their ease of obtainment, multipotential character, ease of differentiating into various cell lines, and considerable potential for angiogenesis. In this article, we presented advantages and limitations of using these types of cells in alopecia treatment.
Recent years have seen considerable progress in explaining the mechanisms of the pathogenesis of psoriasis, with a significant role played in it by the hyper-reactivity of Th1 and Th17 cells, Treg function disorder, as well as complex relationships between immune cells, keratinocytes, and vascular endothelium. The effect of stem cells in the epidermis and stem cells on T cells has been identified and the dysfunction of various types of stem cells may be a prime cause of dysregulation of the inflammatory response in psoriasis. However, exploring these mechanisms in detail could provide a chance to develop new therapeutic strategies. In this paper, the authors reviewed data on the role played by stem cells in the pathogenesis of psoriasis and initial attempts at using them in treatment.
A. KRUSZEWSKA AND W. GAJEWSKI from the same site behave in different crosses. The other mutants chosen were those which were easy to cross and gave only a small proportion of asci showing spurious segregation. Thus, only seven mutants are the object of the present study. These are: 794, Y, 183, 146, 73, 77, 775. All of them, except 73, were tested for complementation in all possible combinations (Baranowska, 1964) with negative results.The media used and the technique of cultivation are given by Paszewski et at. (1966).Since after prolonged vegetative cultivation the strains lose the ability for sexual reproduction, all mutants were crossed from time to time with the wild type and re-isolated. This procedure had no influence on their conversion frequencies. The germination rate of isolated ascospores was about 80%.The octads were tested using the backcross test of Mitchell (1955). RESULTS(i) One-point crosses
A systematic search for suppressors of mutations which cause a deficiency in the splicing of mitochondrial RNA has been undertaken. These splicing mutations were localized in the mRNA-maturase coding sequence of the second intron of the cob-boxgene, i.e. in the box3locus. A total of 953 revertants (mostly spontaneous in origin) were isolated and their genetic nature (nuclear vs. mitochondrial) and phenotype characterized.Most revertants were mitochondrially determined and displayed a wild-type phenotype. A mitochondrial suppressor unlinked with the box3 (-)target mutation was uncovered among the revertants displaying a pseudo-wild phenotype: out of 26 revertants analyzed, derived from 7 different box3(-) mutants only one such suppressor mutation mim3-1 was found. It was localized by rho(-) deletion mapping in the region between the oxi2 and oxi3 gene, within (or in the vicinity) the gene specifying the 15S ribosomal RNA.Nuclear suppressors were isolated from seven different box3 (-)mutants. All were recessive and had a pseudo-wild phenotype. Three such suppressors nam3-1, nam3-2 and nam3-3 were investigated more extensively. Tetrad analysis has shown that they are alleles of the same nuclear locus NAM3 and mitotic analysis has shown that they do not segregate mitotically.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.