An important problem in network science is finding an optimal placement of sensors in nodes in order to uniquely detect failures in the network. This problem can be modelled as an identifying code set (ICS) problem, introduced by Karpovsky et al. in 1998. The ICS problem aims to find a cover of a set S, such that the elements in the cover define a unique signature for each of the elements of S, and to minimise the cover’s cardinality. In this work, we study a generalised identifying code set (GICS) problem, where a unique signature must be found for each subset of S that has a cardinality of at most k (instead of just each element of S). The concept of an independent support of a Boolean formula was introduced by Chakraborty et al. in 2014 to speed up propositional model counting, by identifying a subset of variables whose truth assignments uniquely define those of the other variables.
In this work, we introduce an extended version of independent support, grouped independent support (GIS), and show how to reduce the GICS problem to the GIS problem. We then propose a new solving method for finding a GICS, based on finding a GIS. We show that the prior state-of-the-art approaches yield integer-linear programming (ILP) models whose sizes grow exponentially with the problem size and k, while our GIS encoding only grows polynomially with the problem size and k. While the ILP approach can solve the GICS problem on networks of at most 494 nodes, the GIS-based method can handle networks of up to 21 363 nodes; a ∼40× improvement. The GIS-based method shows up to a 520× improvement on the ILP-based method in terms of median solving time. For the majority of the instances that can be encoded and solved by both methods, the cardinality of the solution returned by the GIS-based method is less than 10% larger than the cardinality of the solution found by the ILP method.
A number of problems in relational Artificial Intelligence can be viewed as Stochastic Constraint Optimization Problems (SCOPs). These are constraint optimization problems that involve objectives or constraints with a stochastic component. Building on the recently proposed language SC-ProbLog for modeling SCOPs, we propose a new method for solving these problems. Earlier methods used Probabilistic Logic Programming (PLP) techniques to create Ordered Binary Decision Diagrams (OBDDs), which were decomposed into smaller constraints in order to exploit existing constraint programming (CP) solvers. We argue that this approach has as drawback that a decomposed representation of an OBDD does not guarantee domain consistency during search, and hence limits the efficiency of the solver. For the specific case of monotonic distributions, we suggest an alternative method for using CP in SCOP, based on the development of a new propagator; we show that this propagator is linear in the size of the OBDD, and has the potential to be more efficient than the decomposition method, as it maintains domain consistency.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.