Reduced lung function predicts mortality and is key to the diagnosis of chronic obstructive pulmonary disease (COPD). In a genome-wide association study in 400,102 individuals of European ancestry, we define 279 lung function signals, 139 of which are new. In combination, these variants strongly predict COPD in independent patient populations. Furthermore, the combined effect of these variants showed generalizability across smokers and never-smokers, and across ancestral groups. We highlight biological pathways, known and potential drug targets for COPD and, in phenome-wide association studies, autoimmune-related and other pleiotropic effects of lung function associated variants. This new genetic evidence has potential to improve future preventive and therapeutic strategies for COPD.
Chronic obstructive pulmonary disease (COPD) is the leading cause of respiratory mortality worldwide. Genetic risk loci provide novel insights into disease pathogenesis. We performed a genome-wide association study in 35,735 cases and 222,076 controls from the UK Biobank and additional studies from the International COPD Genetics Consortium. We identified 82 loci with P -value < 5 × 10 −8 ; 47 were previously described in association with either COPD or population-based lung function. Of the remaining 35 novel loci, 13 were associated with lung function in 79,055 individuals from the SpiroMeta consortium. Using gene expression and regulation data, we identified enrichment for loci in lung tissue, smooth muscle and several lung cell types. We found 14 COPD loci shared with either asthma or pulmonary fibrosis. COPD genetic risk loci clustered into groups of quantitative imaging features and comorbidity associations. Our analyses provide further support to the genetic susceptibility and heterogeneity of COPD.
Background In most countries, healthcare workers (HCWs) represent a priority group for vaccination against severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) due to their elevated risk of COVID-19 and potential contribution to nosocomial SARS-CoV-2 transmission. Concerns have been raised that HCWs from ethnic minority groups are more likely to be vaccine hesitant (defined by the World Health Organisation as refusing or delaying a vaccination) than those of White ethnicity, but there are limited data on SARS-CoV-2 vaccine hesitancy and its predictors in UK HCWs. Methods Nationwide prospective cohort study and qualitative study in a multi-ethnic cohort of clinical and non-clinical UK HCWs. We analysed ethnic differences in SARS-CoV-2 vaccine hesitancy adjusting for demographics, vaccine trust, and perceived risk of COVID-19. We explored reasons for hesitancy in qualitative data using a framework analysis. Findings 11,584 HCWs were included in the cohort analysis. 23% (2704) reported vaccine hesitancy. Compared to White British HCWs (21.3% hesitant), HCWs from Black Caribbean (54.2%), Mixed White and Black Caribbean (38.1%), Black African (34.4%), Chinese (33.1%), Pakistani (30.4%), and White Other (28.7%) ethnic groups were significantly more likely to be hesitant. In adjusted analysis, Black Caribbean (aOR 3.37, 95% CI 2.11 - 5.37), Black African (aOR 2.05, 95% CI 1.49 - 2.82), White Other ethnic groups (aOR 1.48, 95% CI 1.19 - 1.84) were significantly more likely to be hesitant. Other independent predictors of hesitancy were younger age, female sex, higher score on a COVID-19 conspiracy beliefs scale, lower trust in employer, lack of influenza vaccine uptake in the previous season, previous COVID-19, and pregnancy. Qualitative data from 99 participants identified the following contributors to hesitancy: lack of trust in government and employers, safety concerns due to the speed of vaccine development, lack of ethnic diversity in vaccine studies, and confusing and conflicting information. Participants felt uptake in ethnic minority communities might be improved through inclusive communication, involving HCWs in the vaccine rollout, and promoting vaccination through trusted networks. Interpretation Despite increased risk of COVID-19, HCWs from some ethnic minority groups are more likely to be vaccine hesitant than their White British colleagues. Strategies to build trust and dispel myths surrounding the COVID-19 vaccine in these communities are urgently required. Emphasis should be placed on the safety and benefit of SARS-CoV-2 vaccination in pregnancy and in those with previous COVID-19. Public health communications should be inclusive, non-stigmatising and utilise trusted networks. Funding UKRI-MRC and NIHR.
Mitochondrial DNA copy number (mtDNA-CN) measured from blood specimens is a minimally invasive marker of mitochondrial function that exhibits both inter-individual and intercellular variation. To identify genes involved in regulating mitochondrial function, we performed a genome-wide association study (GWAS) in 465,809 White individuals from the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) consortium and the UK Biobank (UKB). We identified 133 SNPs with statistically significant, independent effects associated with mtDNA-CN across 100 loci. A combination of fine-mapping, variant annotation, and co-localization analyses was used to prioritize genes within each of the 133 independent sites. Putative causal genes were enriched for known mitochondrial DNA depletion syndromes (p = 3.09 × 10–15) and the gene ontology (GO) terms for mtDNA metabolism (p = 1.43 × 10–8) and mtDNA replication (p = 1.2 × 10–7). A clustering approach leveraged pleiotropy between mtDNA-CN associated SNPs and 41 mtDNA-CN associated phenotypes to identify functional domains, revealing three distinct groups, including platelet activation, megakaryocyte proliferation, and mtDNA metabolism. Finally, using mitochondrial SNPs, we establish causal relationships between mitochondrial function and a variety of blood cell-related traits, kidney function, liver function and overall (p = 0.044) and non-cancer mortality (p = 6.56 × 10–4).
The association of copy number variations (CNVs), differing numbers of copies of genetic sequence at locations in the genome, with phenotypes such as intellectual disability has been almost exclusively evaluated using clinically ascertained cohorts. The contribution of these genetic variants to cognitive phenotypes in the general population remains unclear.OBJECTIVE To investigate the clinical features conferred by CNVs associated with known syndromes in adult carriers without clinical preselection and to assess the genome-wide consequences of rare CNVs (frequency Յ0.05%; size Ն250 kilobase pairs [kb]) on carriers' educational attainment and intellectual disability prevalence in the general population. DESIGN, SETTING, AND PARTICIPANTSThe population biobank of Estonia contains 52 000 participants enrolled from 2002 through 2010. General practitioners examined participants and filled out a questionnaire of health-and lifestyle-related questions, as well as reported diagnoses. Copy number variant analysis was conducted on a random sample of 7877 individuals and genotype-phenotype associations with education and disease traits were evaluated. Our results were replicated on a high-functioning group of 993 Estonians and 3 geographically distinct populations in the United Kingdom, the United States, and Italy. MAIN OUTCOMES AND MEASURESPhenotypes of genomic disorders in the general population, prevalence of autosomal CNVs, and association of these variants with educational attainment (from less than primary school through scientific degree) and prevalence of intellectual disability. RESULTSOf the 7877 in the Estonian cohort, we identified 56 carriers of CNVs associated with known syndromes. Their phenotypes, including cognitive and psychiatric problems, epilepsy, neuropathies, obesity, and congenital malformations are similar to those described for carriers of identical rearrangements ascertained in clinical cohorts. A genome-wide evaluation of rare autosomal CNVs (frequency, Յ0.05%; Ն250 kb) identified 831 carriers (10.5%) of the screened general population. Eleven of 216 (5.1%) carriers of a deletion of at least 250 kb (odds ratio [OR], 3.16; 95% CI, 1.51-5.98; P = 1.5e-03) and 6 of 102 (5.9%) carriers of a duplication of at least 1 Mb (OR, 3.67; 95% CI, 1.29-8.54; P = .008) had an intellectual disability compared with 114 of 6819 (1.7%) in the Estonian cohort. The mean education attainment was 3.81 (P = 1.06e-04) among 248 (Ն250 kb) deletion carriers and 3.69 (P = 5.024e-05) among 115 duplication carriers (Ն1 Mb). Of the deletion carriers, 33.5% did not graduate from high school (OR, 1.48; 95% CI, 1.12-1.95; P = .005) and 39.1% of duplication carriers did not graduate high school (OR, 1.89; 95% CI, 1.27-2.8; P = 1.6e-03). Evidence for an association between rare CNVs and lower educational attainment was supported by analyses of cohorts of adults from Italy and the United States and adolescents from the United Kingdom.CONCLUSIONS AND RELEVANCE Known pathogenic CNVs in unselected, but assumed to be healthy, adult popu...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.