Long-lasting forms of memory require protein synthesis, but how the pattern of synthesis is related to the storage of a memory has not been determined. Here we show that neural activity directs the mRNA of the Drosophila Ca(2+), Calcium/Calmodulin-dependent Kinase II (CaMKII), to postsynaptic sites, where it is rapidly translated. These features of CaMKII synthesis are recapitulated during the induction of a long-term memory and produce patterns of local protein synthesis specific to the memory. We show that mRNA transport and synaptic protein synthesis are regulated by components of the RISC pathway, including the SDE3 helicase Armitage, which is specifically required for long-lasting memory. Armitage is localized to synapses and lost in a memory-specific pattern that is inversely related to the pattern of synaptic protein synthesis. Therefore, we propose that degradative control of the RISC pathway underlies the pattern of synaptic protein synthesis associated with a stable memory.
Over the course of more than a century of laboratory experimentation, Bacillus subtilis has become "domesticated," losing its ability to carry out many behaviors characteristic of its wild ancestors. One such characteristic is the ability to form architecturally complex communities, referred to as biofilms. Previous work has shown that the laboratory strain 168 forms markedly attenuated biofilms compared with the wild strain NCIB3610 (3610), even after repair of a mutation in sfp (a gene involved in surfactin production) previously known to impair biofilm formation. Here, we show that in addition to the sfp mutation, mutations in epsC, swrA, and degQ are necessary and sufficient to explain the inability of the laboratory strain to produce robust biofilms. Finally, we show that the architecture of the biofilm is markedly influenced by a large plasmid present in 3610 but not 168 and that the effect of the plasmid can be attributed to a gene we designate rapP. When rapP is introduced into 168 together with wild-type alleles of sfp, epsC, swrA, and degQ, the resulting repaired laboratory strain forms biofilms that are as robust as and essentially indistinguishable in architecture from those of the wild strain, 3610. Thus, domestication of B. subtilis involved the accumulation of four mutations and the loss of a plasmid-borne gene.
SummaryProduction of an extracellular matrix is a hallmark of biofilm formation. In the spore-forming bacterium Bacillus subtilis, the matrix consists of an exopolysaccharide, which is specified by the epsA-O operon, and a secreted protein TasA, which is encoded by the yqxM-sipW-tasA operon. Past and present evidence establish that the epsA-O and yqxM-sipW-tasA operons are controlled by the repressor proteins SinR and AbrB. Here, we report the identification of a novel regulatory protein Slr that promotes transcription of the yqxM-sipW-tasA operon but is not needed for expression of the epsA-O operon. We further show that the gene for Slr is itself under the negative control of SinR and AbrB. These findings reveal that matrix production is governed by an intricate network involving the interplay of negatively and positively acting regulatory proteins.
In our paper, some of the Western blots contained incorrectly prepared anti-Tubulin panels that served as ''loading controls.'' We have corrected these panels by repeating the experiments displayed in Figures 5G, 5P, and 6H. The new data, with appropriately modified figure legends, are shown below. These new results and the conclusions do not differ from those in our publication. We apologize for these errors.
Bacillus subtilis is able to form architecturally complex biofilms on solid medium due to the production of an extracellular matrix. A master regulator that controls the expression of the genes involved in matrix synthesis is Spo0A, which is activated by phosphorylation via a phosphorelay involving multiple histidine kinases. Here we report that four kinases, KinA, KinB, KinC, and KinD, help govern biofilm formation but that their contributions are partially masked by redundancy. We show that the kinases fall into two categories and that the members of each pair (one pair comprising KinA and KinB and the other comprising KinC and KinD) are partially redundant with each other. We also show that the kinases are spatially regulated: KinA and KinB are active principally in the older, inner regions of the colony, and KinC and KinD function chiefly in the younger, outer regions. These conclusions are based on the morphology of kinase mutants, real-time measurements of gene expression using luciferase as a reporter, and confocal microscopy using a fluorescent protein as a reporter. Our findings suggest that multiple signals from the older and younger regions of the colony are integrated by the kinases to determine the overall architecture of the biofilm community.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.