PAX8 is a paired-box gene important in embryogenesis of the thyroid, Müllerian, and renal/upper urinary tracts, and expression of PAX8 has been previously described in carcinomas from each of these sites. However, a large study including a wide variety of epithelial neoplasms from multiple organ sites other than the thyroid, kidney, or Müllerian system has not been performed. The goal of this study was to evaluate the utility of PAX8 immunostaining based on the evaluation of a wide range of epithelial tumors. PAX8 immunohistochemistry was performed on 1357 tumors (486 tumors in whole-tissue sections and 871 tumors in tissue microarrays, predominantly epithelial) from multiple organs. Only nuclear staining was scored as positive, and tumors were evaluated for the extent and intensity of staining. Western blot analysis with PAX8 was also performed on multiple tumor cell lines. Nuclear PAX8 staining was present in 91% (60 of 66) of thyroid tumors, 90% (158 of 176) of renal cell carcinomas (RCCs), 81% (13 of 16) of renal oncocytomas, 99% (164 of 165) of high-grade ovarian serous carcinomas, 71% (32 of 49) of nonserous ovarian epithelial neoplasms, 91% (10 of 11) of cervical epithelial lesions, and 98% (152 of 155) of endometrial adenocarcinomas. Of the remaining 719 evaluated tumors, only 30 cases (4%), including 12 thymic neoplasms, 3 bladder urothelial carcinomas, 4 lung squamous cell carcinomas, 2 esophageal adenocarcinomas, 1 pancreatic adenocarcinoma, 2 cholangiocarcinomas, 1 ovarian Sertoli-Leydig cell tumor, 1 ovarian sex cord stromal tumor, 3 testicular mixed germ cell tumors, and 1 acinic cell carcinoma, showed at least weak or focal PAX8 positivity. The unexpected finding was diffuse, moderate staining of PAX8 in a subset of thymomas and thymic carcinomas. The 689 remaining tumors, including but not limited to those from the prostate, colon, stomach, liver, adrenal gland, and head and neck, and small cell carcinomas from the lung, cervix, and ovary, were PAX8 negative. PAX8 specificity was confirmed by Western blot analysis, as expression was detected only in ovarian and RCC cell lines. These results show that PAX8 is a highly sensitive marker for thyroid, renal, Müllerian, and thymic tumors. Importantly, all lung adenocarcinomas, breast and adrenal neoplasms, and the majority of gastrointestinal tumors were negative for PAX8. Therefore, PAX8 is an excellent marker for confirming primary tumor site. In a subset of cases, additional markers, including but not limited to thyroid transcription factor-1, RCC, and Wilms tumor-1, may be needed to distinguish between the 3 most common PAX8-positive tumors.
Infection by carcinogenic human papillomaviruses (HPV) results in precancers [cervical intraepithelial neoplasia (CIN)] and cancers near the ectoendocervical squamocolumnar (SC) junction of the cervix. However, the specific cells targeted by HPV have not been identified and the cellular origin of cervical cancer remains elusive. In this study, we uncovered a discrete population of SC junctional cells with unique morphology and gene-expression profile. We also demonstrated that the selected junctional biomarkers were expressed by a high percentage of high-grade CIN and cervical cancers associated with carcinogenic HPVs but rarely in ectocervical/transformation zone CINs or those associated with noncarcinogenic HPVs. That the original SC junction immunophenotype was not regenerated at new SC junctions following excision, not induced by expression of viral oncoproteins in foreskin keratinocytes, and not seen in HPV-related precursors of the vagina, vulva, and penis further support the notion that junctional cells are the source of cervical cancer. Taken together, our findings suggest that carcinogenic HPV-related CINs and cervical cancers are linked to a small, discrete cell population that localizes to the SC junction of the cervix, expresses a unique gene expression signature, and is not regenerated after excision. The findings in this study uncover a potential target for cervical cancer prevention, provide insight into the risk assessment of cervical lesions, and establish a model for elucidating the pathway to cervical cancer following carcinogenic HPV infection.
Purpose Current staging systems for oral cavity cancers incorporate lymph node (LN) size and laterality, but place less weight on the total number of positive metastatic nodes. We investigated the independent impact of numerical metastatic LN burden on survival. Methods Adult patients with oral cavity squamous cell carcinoma undergoing upfront surgical resection for curative intent were identified in the National Cancer Data Base between 2004 and 2013. A neck dissection of a minimum of 10 LNs was required. Multivariable models were constructed to assess the association between the number of metastatic LNs and survival, adjusting for factors such as nodal size, laterality, extranodal extension, margin status, and adjuvant treatment. Results Overall, 14,554 patients met inclusion criteria (7,906 N0 patients; 6,648 node-positive patients). Mortality risk escalated continuously with increasing number of metastatic nodes without plateau, with the effect most pronounced with up to four LNs (HR, 1.34; 95% CI, 1.29 to 1.39; P < .001). Extranodal extension (HR, 1.41; 95% CI, 1.20 to 1.65; P < .001) and lower neck involvement (HR, 1.16; 95% CI, 1.06 to 1.27; P < .001) also predicted increased mortality. Increasing number of nodes examined was associated with improved survival, plateauing at 35 LNs (HR, 0.98; 95% CI, 0.98 to 0.99; P < .001). In multivariable models accounting for the number of metastatic nodes, contralateral LN involvement (N2c status) and LN size were not associated with mortality. A novel nodal staging system derived by recursive partitioning analysis exhibited greater concordance than the American Joint Committee on Cancer (8th edition) system. Conclusion The number of metastatic nodes is a critical predictor of oral cavity cancer mortality, eclipsing other features such as LN size and contralaterality in prognostic value. More robust incorporation of numerical metastatic LN burden may augment staging and better inform adjuvant treatment decisions.
Background Cervical cancer is the second leading cause of cancer deaths among women worldwide. We sought to describe the most common oncogenic mutations in cervical cancers, and to explore genomic differences between the two most common histological subtypes: adenocarcinoma and squamous cell carcinoma. Methods A high-throughput genotyping platform, termed Oncomap, was used to interrogate 80 cervical tumors for 1250 known mutations in 139 cancer genes. Samples were analyzed using a mass spectrometry-based genotyping platform (Sequenom), and validated with an orthogonal chemistry. EGFR mutations were further validated by massively parallel sequencing (Illumina). Human papilloma virus (HPV) genotyping was also performed. Results Validated mutations were detected in 60.0% (48/80) of tumors examined. The highest mutation rates were PIK3CA (31.3%), KRAS (8.8%), and EGFR (3.8%). PIK3CA mutation rates were not significantly different in adenocarcinoma and squamous cell carcinomas (25.0% vs. 37.5%, respectively, p=0.33). In contrast, KRAS mutations were identified only in adenocarcinoma (17.5% vs. 0%, p=0.01), and a novel EGFR mutation was detected only in squamous cell carcinomas (0% vs. 7.5%, p=0.24). There were no associations between HPV-16 or HPV-18 and somatic mutations or overall survival. In adjusted analyses, PIK3CA mutations were associated with shorter survival—67.1 vs. 90.3 months (HR=9.1, 95% CI 2.8–29.5, p<0.001). Conclusions Cervical cancers harbor high rates of potentially targetable oncogenic mutations. In addition, cervical squamous cell carcinoma and adenocarcinoma have distinct molecular profiles, suggesting that clinical outcomes may be improved with the use of more tailored treatment strategies, including PI3-kinase and MEK inhibitors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.