Age potentiates neurodegeneration and impairs recovery from spinal cord injury (SCI). Previously, we observed that age alters the balance of destructive (M1) and protective (M2) macrophages, however, the age-related pathophysiology in SCI is poorly understood. NADPH oxidase (NOX) contributes to reactive oxygen species (ROS)-mediated damage and macrophage activation in neurotrauma. Further, NOX/ROS increase with CNS age. Here, we found significantly higher ROS generation in 14 vs. 4-month-old (MO) mice after contusion SCI. Notably, NOX2 increased in 14 MO ROS-producing macrophages suggesting that macrophages and NOX contribute to SCI oxidative stress. Indicators of lipid peroxidation, a downstream cytotoxic effect of ROS accumulation, were significantly higher in 14 vs. 4 MO SCI mice. We also detected a higher percentage of ROS-producing M2 (Arginase-1-positive) macrophages in 14 vs. 4 MO mice, a previously unreported SCI phenotype, and increased M1 (CD16/32-positive) macrophages with age. Thus, NOX and ROS are age-related mediators of SCI pathophysiology and normally protective M2 macrophages may potentiate secondary injury through ROS generation in the aged injured spinal cord.
Experimental models of spinal cord injury (SCI) typically utilize contusion or compression injuries. Clinically, however, SCI is heterogeneous and the primary injury mode may affect secondary injury progression and neuroprotective therapeutic efficacy. Specifically, immunomodulatory agents are of therapeutic interest because the activation state of SCI macrophages may facilitate pathology but also improve repair. It is unknown currently how the primary injury biomechanics affect macrophage activation. Therefore, to determine the effects of compression subsequent to spinal contusion, we examined recovery, secondary injury, and macrophage activation in C57/BL6 mice after SCI with or without a 20 sec compression at two contusion impact forces (50 and 75 kdyn). We observed that regardless of the initial impact force, compression increased tissue damage and worsened functional recovery. Interestingly, compression-dependent damage is not evident until one week after SCI. Further, compression limits functional recovery to the first two weeks post-SCI; in the absence of compression, mice receiving contusion SCI recover for four weeks. To determine whether the recovery plateau is indicative of compression-specific inflammatory responses, we examined macrophage activation with immunohistochemical markers of purportedly pathological (CD86 and macrophage receptor with collagenous structure [MARCO]) and reparative macrophages (arginase [Arg1] and CD206). We detected significant increases in macrophages expression of MARCO and decreases in macrophage Arg1 expression with compression, suggesting a biomechanical-dependent shift in SCI macrophage activation. Collectively, compression-induced alterations in tissue and functional recovery and inflammation highlight the need to consider the primary SCI biomechanics in the design and clinical implementation of immunomodulatory therapies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.