This article is published online with Open Access and distributed under the terms of the Creative Commons Attribution License (CC BY 4.0).
Research software is a fundamental and vital part of research, yet significant challenges to discoverability, productivity, quality, reproducibility, and sustainability exist. Improving the practice of scholarship is a common goal of the open science, open source, and FAIR (Findable, Accessible, Interoperable and Reusable) communities and research software is now being understood as a type of digital object to which FAIR should be applied. This emergence reflects a maturation of the research community to better understand the crucial role of FAIR research software in maximising research value. The FAIR for Research Software (FAIR4RS) Working Group has adapted the FAIR Guiding Principles to create the FAIR Principles for Research Software (FAIR4RS Principles). The contents and context of the FAIR4RS Principles are summarised here to provide the basis for discussion of their adoption. Examples of implementation by organisations are provided to share information on how to maximise the value of research outputs, and to encourage others to amplify the importance and impact of this work.
Supplementary data are available at Bioinformatics online.
In geographic information systems (GIS), analysts answer questions by designing workflows that transform a certain type of data into a certain type of goal. Semantic data types help constrain the application of computational methods to those that are meaningful for such a goal. This prevents pointless computations and helps analysts design effective workflows. Yet, to date it remains unclear which types would be needed in order to ease geo-analytical tasks. The data types and formats used in GIS still allow for huge amounts of syntactically possible but nonsensical method applications. Core concepts of spatial information and related geo-semantic distinctions have been proposed as abstractions to help analysts formulate analytic questions and to compute appropriate answers over geodata of different formats. In essence, core concepts reflect particular interpretations of data which imply that certain transformations are possible. However, core concepts usually remain implicit when operating on geodata, since a concept can be represented in a variety of forms. A central question therefore is: Which semantic types would be needed to capture this variety and its implications for geospatial analysis? In this article, we propose an ontology design pattern of core concept data types that help answer geo-analytical questions. Based on a scenario to compute a liveability atlas for Amsterdam, we show that diverse kinds of geo-analytical questions can be answered by this pattern in terms of valid, automatically constructible GIS workflows using standard sources.
The bio.tools registry is a main catalogue of computational tools in the life sciences. More than 17 000 tools have been registered by the international bioinformatics community. The bio.tools metadata schema includes semantic annotations of tool functions, that is, formal descriptions of tools’ data types, formats, and operations with terms from the EDAM bioinformatics ontology. Such annotations enable the automated composition of tools into multistep pipelines or workflows. In this Technical Note, we revisit a previous case study on the automated composition of proteomics workflows. We use the same four workflow scenarios but instead of using a small set of tools with carefully handcrafted annotations, we explore workflows directly on bio.tools. We use the Automated Pipeline Explorer (APE), a reimplementation and extension of the workflow composition method previously used. Moving “into the wild” opens up an unprecedented wealth of tools and a huge number of alternative workflows. Automated composition tools can be used to explore this space of possibilities systematically. Inevitably, the mixed quality of semantic annotations in bio.tools leads to unintended or erroneous tool combinations. However, our results also show that additional control mechanisms (tool filters, configuration options, and workflow constraints) can effectively guide the exploration toward smaller sets of more meaningful workflows.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.