The scarcity of accessible sites that are dynamic or cell type-specific in plants may be due in part to tissue heterogeneity in bulk studies. To assess the effects of tissue heterogeneity, we apply single-cell ATAC-seq to Arabidopsis thaliana roots and identify thousands of differentially accessible sites, sufficient to resolve all major cell types of the root. We find that the entirety of a cell’s regulatory landscape and its transcriptome independently capture cell type identity. We leverage this shared information on cell identity to integrate accessibility and transcriptome data to characterize developmental progression, endoreduplication and cell division. We further use the combined data to characterize cell type-specific motif enrichments of transcription factor families and link the expression of family members to changing accessibility at specific loci, resolving direct and indirect effects that shape expression. Our approach provides an analytical framework to infer the gene regulatory networks that execute plant development.
In plants, chromatin accessibility – the primary mark of regulatory DNA – is relatively static across tissues and conditions. This scarcity of accessible sites that are dynamic or tissue-specific may be due in part to tissue heterogeneity in previous bulk studies. To assess the effects of tissue heterogeneity, we apply single-cell ATAC-seq to A. thaliana roots and identify thousands of differentially accessible sites, sufficient to resolve all major cell types of the root. However, even this vast increase relative to bulk studies in the number of dynamic sites does not resolve the poor correlation at individual loci between accessibility and expression. Instead, we find that the entirety of a cell’s regulatory landscape and its transcriptome each capture cell type identity independently. We leverage this shared information on cell identity to integrate accessibility and transcriptome data in order to characterize developmental progression, endoreduplication and cell division in the root. We further use the combined data to characterize cell type-specific motif enrichments of large transcription factor families and to link the expression of individual family members to changing accessibility at specific loci, taking the first steps toward resolving the direct and indirect effects that shape gene expression. Our approach provides an analytical framework to infer the gene regulatory networks that execute plant development.
The oxidative tricarboxylic acid (TCA) cycle is a central mitochondrial pathway integrating catabolic conversions of NAD+ to NADH and anabolic production of aspartate, a key amino acid for cell proliferation. Several TCA cycle components are implicated in tumorigenesis, including loss of function mutations in subunits of succinate dehydrogenase (SDH), also known as complex II of the electron transport chain (ETC), but mechanistic understanding of how proliferating cells tolerate the metabolic defects of SDH loss is still lacking. Here, we identify that SDH supports human cell proliferation through aspartate synthesis but, unlike other ETC impairments, the effects of SDH inhibition are not ameliorated by electron acceptor supplementation. Interestingly, we find aspartate production and cell proliferation are restored to SDH-impaired cells by concomitant inhibition of ETC complex I (CI). We determine that the benefits of CI inhibition in this context depend on decreasing mitochondrial NAD+/NADH, which drives SDH-independent aspartate production through pyruvate carboxylation and reductive carboxylation of glutamine. We also find that genetic loss or restoration of SDH selects for cells with concordant CI activity, establishing distinct modalities of mitochondrial metabolism for maintaining aspartate synthesis. These data therefore identify a metabolically beneficial mechanism for CI loss in proliferating cells and reveal how compartmentalized redox changes can impact cellular fitness.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.