We have exploited a typically undesired elementary step in cross-coupling reactions, β-hydride elimination, to accomplish palladium-catalyzed dehydrohalogenations of alkyl bromides to form terminal olefins. We have applied this method, which proceeds in excellent yield at room temperature in the presence of a variety of functional groups, to a formal total synthesis of (R)-mevalonolactone. Our mechanistic studies establish that the rate-determining step can vary with the structure of the alkyl bromide, and, most significantly, that L2PdHBr (L=phosphine), an often-invoked intermediate in palladium-catalyzed processes such as the Heck reaction, is not an intermediate in the active catalytic cycle.
Small molecule dual hydrogen-bond (H-bond) donors such as ureas, thioureas, squaramides, and guanidinium ions enjoy widespread use as effective catalysts for promoting a variety of enantioselective reactions. However, these catalysts are only weakly acidic, and therefore require highly reactive electrophilic substrates in order to be effective. We introduce here a mode of catalytic activity with chiral H-bond donors that enables enantioselective reactions of relatively unreactive electrophiles. Squaramides are shown to interact with silyl triflates by binding the triflate counterion to form a stable yet highly Lewis acidic complex. The silyl triflate-chiral squaramide combination promotes the generation of oxocarbenium intermediates from acetal substrates at low temperatures. Enantioselectivity in nucleophile additions to the cationic intermediates is then controlled through a network of non-covalent interactions between the squaramide catalyst and the oxocarbenium triflate.
Binaphthol-catalyzed asymmetric Petasis reactions of salicylaldehydes with dibutyl vinylboronates and secondary amines in the presence of 4 Å molecular sieves (MS) afforded products with up to 99% ee in isolated yields of 39-94%. The 99% ee of the product indicated that the reaction by the binaphthol-catalyzed pathway was roughly 500 times faster than the uncatalyzed pathway. NMR experiments ((1)H and (11)B) showed that the amine component played a role in triggering the reaction between the binaphthol catalyst and the vinylboronate in the catalytic reaction sequence. The 4 Å MS enhanced both the rate and enantioselectivity by effective removal of water from the reaction system. A novel rearrangement reaction of the unconjugated allylic amine Petasis reaction product to a conjugated allylic amine was also observed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.