Metal–organic frameworks (MOFs) and their derivatives are considered as promising catalysts for the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER), which are important for many energy provision technologies, such as electrolyzers, fuel cells and some types of advanced batteries. In this work, a “strain modulation” approach has been applied through the use of surface‐mounted NiFe‐MOFs in order to design an advanced bifunctional ORR/OER electrocatalyst. The material exhibits an excellent OER activity in alkaline media, reaching an industrially relevant current density of 200 mA cm−2 at an overpotential of only ≈210 mV. It demonstrates operational long‐term stability even at a high current density of 500 mA cm−2 and exhibits the so far narrowest “overpotential window” ΔEORR‐OER of 0.69 V in 0.1 m KOH with a mass loading being two orders of magnitude lower than that of benchmark electrocatalysts.
Flexible metal-organic frameworks (MOFs) are structurally flexible, porous, crystalline solids that show a structural transition in response to a stimulus. If MOF-based solid-state and microelectronic devices are to be capable of leveraging such structural flexibility, then the integration of MOF thin films into a device configuration is crucial. Here we report the targeted and precise anchoring of Cu-based alkylether-functionalised layered-pillared MOF crystallites onto substrates via stepwise liquid-phase epitaxy. The structural transformation during methanol sorption is monitored by in-situ grazing incidence X-ray diffraction. Interestingly, spatially-controlled anchoring of the flexible MOFs on the surface induces a distinct structural responsiveness which is different from the bulk powder and can be systematically controlled by varying the crystallite characteristics, for instance dimensions and orientation. This fundamental understanding of thin-film flexibility is of paramount importance for the rational design of MOF-based devices utilising the structural flexibility in specific applications such as selective sensors.
We report on the preparation of surface-anchored nanoparticles of the metal–organic framework (MOF) UiO-66 (Universitet i Oslo; Zr6O4(OH)4(bdc)6; bdc2– = 1,4-benzene dicarboxylate). The surface-anchored nano-MOFs (SA-NMOFs) were prepared by covalent anchoring of a presynthesized, functionalized UiO-66 nano-MOF (NMOF) on surface-modified poly(dimethylsiloxane). The SA-NMOFs exhibit discrete NMOFs (<30 nm) which do not aggregate. The SA-NMOFs retain a high surface area, rendering them interesting catalysts. We compared the catalytic activities of SA-NMOFs in the cyanosilylation of benzaldehyde with those of the bulk UiO-66 and colloidal-dispersed UiO-66 NMOFs (size: 22 ± 3 nm). The SA-NMOFs exhibit a boost in activity by a factor of 100,000–1,000,000 owing to (a) the generally larger surface area of NMOFs and (b) the suppressed aggregation of the nanoparticles by surface immobilization. In contrast, colloidal NMOFs rapidly aggregate, as shown by dynamic light scattering. The general applicability of our approach for other Lewis acid-catalyzed reactions is demonstrated by comparing the activities of the three catalyst systems for the cycloaddition of CO2 and propylene oxide to propylene carbonate, where SA-NMOFs by far outperform the bulk MOFs and defect-engineered MOFs, respectively. This discovery paves the way for application of SA-NMOFs as efficient catalyst materials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.