Amyloid-β (Aβ) immunotherapy for Alzheimer's disease (AD) has good preclinical support from transgenic mouse models and clinical data suggesting that a long-term treatment effect is possible. Soluble Aβ protofibrils have been shown to exhibit neurotoxicity in vitro and in vivo, and constitute an attractive target for immunotherapy. Here, we demonstrate that the humanized antibody BAN2401 and its murine version mAb158 exhibit a strong binding preference for Aβ protofibrils over Aβ monomers. Further, we confirm the presence of the target by showing that both antibodies efficiently immunoprecipitate soluble Aβ aggregates in human AD brain extracts. mAb158 reached the brain and reduced the brain protofibril levels by 42% in an exposure-dependent manner both after long-term and short-term treatment in tg-ArcSwe mice. Notably, a 53% reduction of protofibrils/oligomers in cerebrospinal fluid (CSF) that correlated with reduced brain protofibril levels was observed after long-term treatment, suggesting that CSF protofibrils/oligomers could be used as a potential biomarker. No change in native monomeric Aβ42 could be observed in brain TBS extracts after mAb158-treatment in tg-ArcSwe mice. By confirming the specific ability of mAb158 to selectively bind and reduce soluble Aβ protofibrils, with minimal binding to Aβ monomers, we provide further support in favor of its position as an attractive new candidate for AD immunotherapy. BAN2401 has undergone full phase 1 development, and available data indicate a favorable safety profile in AD patients.
Amyloid-beta (Abeta) peptide levels are widely measured by enzyme-linked immunosorbent assay (ELISA) in Alzheimer's disease research. Here, we show that oligomerization of Abeta results in underestimated Abeta ELISA levels. The implications are that comprehensive analysis of soluble Abeta requires either sample pretreatment at denaturing conditions or novel conformation-dependent immunoassays. Our findings might be of relevance for many neurodegenerative disorders in which soluble protein aggregates are the main neurotoxic species.
In the early 1990s, breakthrough discoveries on the genetics of Alzheimer’s disease led to the identification of missense mutations in the amyloid‐β precursor protein gene. Research findings quickly followed, giving insights into molecular pathogenesis and possibilities for the development of new types of animal models. The complete toolbox of transgenic techniques, including pronuclear oocyte injection and homologous recombination, has been applied in the Alzheimer’s disease field, to produce overexpressors, knockouts, knockins and regulatable transgenics. Transgenic models have dramatically advanced our understanding of pathogenic mechanisms and allowed therapeutic approaches to be tested. Following a brief introduction to Alzheimer’s disease, various nontransgenic and transgenic animal models are described in terms of their values and limitations with respect to pathogenic, therapeutic and functional understandings of the human disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.