To shed more light
on the mechanisms of UV-induced hydrogen-atom-transfer
processes in heterocyclic molecules, phototautomeric thione →
thiol reactions were investigated for thione compounds isolated in
low-temperature Ar as well as in n-H
2
(normal hydrogen)
matrices. These studies concerned thione compounds with a five-membered
heterocyclic ring and thione compounds with a six-membered heterocyclic
ring. The experimental investigation of 2-thioimidazole and 3-thio-1,2,4-triazole
(thione compounds with a five-membered heterocyclic ring) revealed
that for the compounds isolated in solid n-H
2
only trace
amounts of thiol photoproducts were photogenerated; even though for
the same compounds isolated in the solid Ar matrix, the thione → thiol photoconversion
was nearly
total. In contrast to that, for 3-thiopyridazine and 2-thioquinoline
(thione compounds with a six-membered heterocyclic
ring) isolated in solid n-H
2
, the UV-induced thione →
thiol conversion occurred with the yield reaching 25–50% of
the yield of the analogous process observed for the same species isolated
in solid Ar. The obtained experimental results allow us to conclude
that the dissociation–association mechanism nearly exclusively
governs the phototransformation in thione heterocycles with high barriers
for tautomerization (such as thione compounds with a five-membered
ring), whereas the strictly intramolecular hydrogen-atom shift contributes
to the mechanism of hydrogen-atom transfer in thione heterocycles
with lower barriers (such as thione compounds with a six-membered
ring).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.