Coronaviruses raise serious concerns as emerging zoonotic viruses without specific antiviral drugs available. Here we screened a collection of 16671 diverse compounds for anti-human coronavirus 229E activity and identified an inhibitor, designated K22, that specifically targets membrane-bound coronaviral RNA synthesis. K22 exerts most potent antiviral activity after virus entry during an early step of the viral life cycle. Specifically, the formation of double membrane vesicles (DMVs), a hallmark of coronavirus replication, was greatly impaired upon K22 treatment accompanied by near-complete inhibition of viral RNA synthesis. K22-resistant viruses contained substitutions in non-structural protein 6 (nsp6), a membrane-spanning integral component of the viral replication complex implicated in DMV formation, corroborating that K22 targets membrane bound viral RNA synthesis. Besides K22 resistance, the nsp6 mutants induced a reduced number of DMVs, displayed decreased specific infectivity, while RNA synthesis was not affected. Importantly, K22 inhibits a broad range of coronaviruses, including Middle East respiratory syndrome coronavirus (MERS–CoV), and efficient inhibition was achieved in primary human epithelia cultures representing the entry port of human coronavirus infection. Collectively, this study proposes an evolutionary conserved step in the life cycle of positive-stranded RNA viruses, the recruitment of cellular membranes for viral replication, as vulnerable and, most importantly, druggable target for antiviral intervention. We expect this mode of action to serve as a paradigm for the development of potent antiviral drugs to combat many animal and human virus infections.
BackgroundMajor hurdles for survival after lung transplantation are rejections and infectious complications. Adequate methods for monitoring immune suppression status are lacking. Here, we evaluated quantification of torque teno virus (TTV) and Epstein-Barr virus (EBV) as biomarkers for defining the net state of immunosuppression in lung-transplanted patients.MethodsThis prospective single-center study included 98 patients followed for 2 years after transplantation. Bacterial infections, fungal infections, viral respiratory infections (VRTI), cytomegalovirus (CMV) viremia, and acute rejections, as well as TTV and EBV levels, were monitored.ResultsThe levels of torque teno virus DNA increased rapidly after transplantation, likely due to immunosuppressive treatment. A modest increase in levels of Epstein-Barr virus DNA was also observed after transplantation. There were no associations between either TTV or EBV and infectious events or acute rejection, respectively, during follow-up. When Tacrolimus was the main immunosuppressive treatment, TTV DNA levels were significantly elevated 6–24 months after transplantation as compared with Cyclosporine treatment.ConclusionsAlthough replication of TTV, but not EBV, appears to reflect the functionality of the immune system, depending on the type of immunosuppressive treatment, quantification of TTV or EBV as biomarkers has limited potential for defining the net state of immune suppression.
A number of different viruses including respiratory syncytial virus (RSV) initiate infection of cells by binding to cell surface glycosaminoglycans and sulfated oligo- and polysaccharide mimetics of these receptors exhibit potent antiviral activity in cultured cells. We investigated whether the introduction of different lipophilic groups to the reducing end of sulfated oligosaccharides would modulate their anti-RSV activity. Our results demonstrate that the cholestanol-conjugated tetrasaccharide (PG545) exhibited ∼5- to 16-fold enhanced anti-RSV activity in cultured cells compared with unmodified sulfated oligosaccharides. Furthermore, PG545 displayed virus-inactivating (virucidal) activity, a feature absent in sulfated oligosaccharides. To inhibit RSV infectivity PG545 had to be present during the initial steps of viral infection of cells. The anti-RSV activity of PG545 was due to both partial inhibition of the virus attachment to cells and a more profound interference with some post-attachment steps as PG545 efficiently neutralized infectivity of the cell-adsorbed virus. The anti-RSV activity of PG545 was reduced when tested in the presence of human nasal secretions. Serial passages of RSV in the presence of increasing concentrations of PG545 selected for weakly resistant viral variants that comprised the F168S and the P180S amino acid substitutions in the viral G protein. Altogether we identified a novel and potent inhibitor of RSV, which unlike sulfated oligo- and polysaccharide compounds, could irreversibly inactivate RSV infectivity.
The leptin receptor (OBR) and its ligand leptin (OB) are key players in the regulation of body weight. The OBR is a member of the class I cytokine receptor family and is alternatively spliced into at least six different isoforms. The multiple forms are identical in their extracellular and transmembrane regions but differ in lengths. The two predominant isoforms include a long form (OBR(l)) with an intracellular domain of 303 amino acids and a shorter form (OBR(s)) with an intracellular domain of 34 amino acids. We have constructed a recombinant OBR(l) chimera with the green fluorescent protein (GFP) by fusing GFP to the C-terminus of the OBR(l). The OBR(l)-GFP chimera was transiently transfected and expressed in SHSY5Y and HEK293 cells. In a STAT-Luciferase assay we show that the GFP moiety in this chimera did not affect the signalling capacity of OBR(l)-GFP. In both SHSY5Y and HEK293 cells transfected with OBR(l)-GFP, a predominant intracellular green OBR(l)-GFP fluorescence was detected in vesicles also positive for internalized fluorophore conjugated leptin. We also found that treatment with the lysosomotropic reagent monensin did not relocalize OBR(l)-GFP together with the human transferrin receptor in recycling endosomes, indicating OBR(l)-GFP not to participate in this pathway. In biotinylation-streptavidin pulse chase experiments, using antibodies raised against GFP and OBR, we observed that the rate of early appearance of OBR(s) at the cell surface, upon leptin stimulation, was faster than that found for OBR(l)-GFP. Taken together, our results provide novel data concerning the intracellular trafficking of the two different isoforms of the leptin receptor.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.