Spatial orientation and navigation depend primarily on vision. Blind people lack this critical source of information. To facilitate wayfinding and to increase the feeling of safety for these people, the “feelSpace belt” was developed. The belt signals magnetic north as a fixed reference frame via vibrotactile stimulation. This study investigates the effect of the belt on typical orientation and navigation tasks and evaluates the emotional impact. Eleven blind subjects wore the belt daily for seven weeks. Before, during and after the study period, they filled in questionnaires to document their experiences. A small sub-group of the subjects took part in behavioural experiments before and after four weeks of training, i.e., a straight-line walking task to evaluate the belt’s effect on keeping a straight heading, an angular rotation task to examine effects on egocentric orientation, and a triangle completion navigation task to test the ability to take shortcuts. The belt reduced subjective discomfort and increased confidence during navigation. Additionally, the participants felt safer wearing the belt in various outdoor situations. Furthermore, the behavioural tasks point towards an intuitive comprehension of the belt. Altogether, the blind participants benefited from the vibrotactile belt as an assistive technology in challenging everyday situations.
Navigating in foreign surroundings necessitates peak concentration for blind travellers. Yet, most navigational aids heavily rely on attentional resources as well as on audition. Audition is a modality of supreme importance for the blind, allowing to react to cues of the immediate environment. Thus, it would be highly beneficial for a navigational aid for the blind to not or only partially rely on attentional resources and be easily interpreted and integrated into behaviour. Following the sensorimotor contingency (SMC) theory, which is embedded in the theoretical framework of embodiment, such endeavour has the potential to succeed by employing sensory augmentation devices. According to SMC theory, statistic regularities termed sensorimotor contingencies coupling action and perception are constitutive of conscious perception. Consequentially, since those regularities differ in between modality, also the qualitative experience of different modalities differ. Following this line of thought, new SMCs can be created through sensory augmentation devices and learned by exploring the SMC. The objective of this study is to further investigate if and to what extent such sensory augmentation device can be integrated into behaviour. Therefore, the weak integration hypothesis and the sub-cognitive processing hypothesis as established by Nagel et al. (2005) will be employed to evaluate the integration according to their criteria.Eleven congenitally and adventitiously blind adult subjects were provided with vibrotactile directional information of the magnetic north around the waist through a device termed naviBelt for seven weeks. At the beginning and at the middle of the study the integration of the signal of five participants was assessed using a battery of behavioural tests. These tests consisted of a straight-line-walking task, an angular rotation task and a triangle completion task. Furthermore, throughout the period of study all participants completed preliminary, weekly and final questionnaires, inspired by Kärcher et al. (2012). The questionnaires allowed to gain a more holistic picture of the subjective experience and the self-assessed benefits of the belt. In addition, two deaf-blind participants were provided with the belt for three to four weeks and answered questionnaires adjusted to their needs.The straight-line-walking task showed instant improvements in path stabilization when provided with the belt. In two participants characteristic behaviour of the sub-cognitive processing hypothesis is obtained. An overall improvement independent of whether the belt is worn or not is especially evident after the training period in the angular rotation task. This indicates an enhanced direction estimation accuracy, which is highly related to the understanding of the belt signal. Evidence for enhanced path integration and navigational skills through the belt can be found in the results of the triangle completion task. For two participants the performance improved even with an additional attentional load, hinting towards sub-cognitive processing.Overall, the data supports the weak integration hypothesis and points towards the sub-cognitive processing hypothesis and thus show that SMCs can be learned, which is in line with the theory of embodiment. Crucially, the study further exemplifies how such integration into behaviour can be of great benefit as assistive device for blind and deaf-blind.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.