How do growing bacterial colonies get their shapes? While colony morphogenesis is well studied in two dimensions, many bacteria grow as large colonies in three-dimensional (3D) environments, such as gels and tissues in the body or subsurface soils and sediments. Here, we describe the morphodynamics of large colonies of bacteria growing in three dimensions. Using experiments in transparent 3D granular hydrogel matrices, we show that dense colonies of four different species of bacteria generically become morphologically unstable and roughen as they consume nutrients and grow beyond a critical size—eventually adopting a characteristic branched, broccoli-like morphology independent of variations in the cell type and environmental conditions. This behavior reflects a key difference between two-dimensional (2D) and 3D colonies; while a 2D colony may access the nutrients needed for growth from the third dimension, a 3D colony inevitably becomes nutrient limited in its interior, driving a transition to unstable growth at its surface. We elucidate the onset of the instability using linear stability analysis and numerical simulations of a continuum model that treats the colony as an “active fluid” whose dynamics are driven by nutrient-dependent cellular growth. We find that when all dimensions of the colony substantially exceed the nutrient penetration length, nutrient-limited growth drives a 3D morphological instability that recapitulates essential features of the experimental observations. Our work thus provides a framework to predict and control the organization of growing colonies—as well as other forms of growing active matter, such as tumors and engineered living materials—in 3D environments.
How do growing bacterial colonies get their shapes? While colony morphogenesis is well-studied in 2D, many bacteria grow as large colonies in 3D environments, such as gels and tissues in the body, or soils, sediments, and subsurface porous media. Here, we describe a morphological instability exhibited by large colonies of bacteria growing in 3D. Using experiments in transparent 3D granular hydrogel matrices, we show that dense colonies of four different species of bacteria—Escherichia coli, Vibrio cholerae, Pseudomonas aeruginosa, and Komagataeibacter sucrofermentans—generically roughen as they consume nutrients and grow beyond a critical size, eventually adopting a characteristic branched, broccoli-like, self-affine morphology independent of variations in the cell type and environmental conditions. This behavior reflects a key difference between 2D and 3D colonies: while a 2D colony may access the nutrients needed for growth from the third dimension, a 3D colony inevitably becomes nutrient-limited in its interior, driving a transition to rough growth at its surface. We elucidate the onset of roughening using linear stability analysis and numerical simulations of a continuum model that treats the colony as an ‘active fluid’ whose dynamics are driven by nutrient-dependent cellular growth. We find that when all dimensions of the growing colony substantially exceed the nutrient penetration length, nutrient-limited growth drives a 3D morphological instability that recapitulates essential features of the experimental observations. Our work thus provides a framework to predict and control the organization of growing colonies—as well as other forms of growing active matter, such as tumors and engineered living materials—in 3D environments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.