In mice, immunoregulatory APCs express the dendritic cell (DC) marker CD11c, and one or more distinctive markers (CD8α, B220, DX5). In this study, we show that expression of the tryptophan-degrading enzyme indoleamine 2,3 dioxygenase (IDO) is selectively induced in specific splenic DC subsets when mice were exposed to the synthetic immunomodulatory reagent CTLA4-Ig. CTLA4-Ig did not induce IDO expression in macrophages or lymphoid cells. Induction of IDO completely blocked clonal expansion of T cells from TCR transgenic mice following adoptive transfer, whereas CTLA4-Ig treatment did not block T cell clonal expansion in IDO-deficient recipients. Thus, IDO expression is an inducible feature of specific subsets of DCs, and provides a potential mechanistic explanation for their T cell regulatory properties.
Th17 cells require IL-6 and TGFβ for lineage commitment and IL-23 for maintenance. Unexpectedly, naive IL-6−/− splenocytes stimulated with anti-CD3 and IL-23 produced normal amounts of IL-17 during the first 24 h of culture. These rapid IL-6-independent IL-17 producers were identified as predominantly DX5+ TCRβ+ NKT cells, and a comparable response could be found using the invariant NKT-specific ligand α-galactosylceramide. Human NKT cells also produced IL-17. NKT cells constitutively expressed IL-23R and RORγt. Ligation of either TCR or IL-23R triggered IL-17 production and both together had a synergistic effect, suggesting independent but convergent pathways. IL-17 production was not restricted to a particular subset of NKT cells but they were NK1.1 negative. Importantly, in vivo administration of α-galactosylceramide triggered a rapid IL-17 response in the spleen. These data suggest an important biological role for innate IL-17 production by NKT cells that is rapid and precedes the adaptive IL-17 response.
Murine dendritic cells (DCs) expressing indoleamine 2,3 dioxygenase (IDO) catabolize tryptophan and can suppress T cell responses elicited in vivo. Here, we identify specific subsets of splenic (CD11c+) dendritic cells competent to mediate IDO-dependent T cell suppression following CTLA4-mediated ligation of B7 molecules. IDO-competent DC subsets acquired potent and dominant T cell suppressive properties as a consequence of IDO up-regulation, as they blocked the ability of T cells to respond to other stimulatory DCs in the same cultures. Soluble CTLA4 (CTLA4-Ig) and cloned CTLA4+ regulatory T cells (Tr1D1) up-regulated IDO selectively in DC subsets co-expressing B220 or CD8alpha. The ability of Tr1D1 T cells to suppress CD8+ T cell responses was completely dependent on their ability to induce tryptophan catabolism in DCs. Selective IDO up-regulation in DCs did not inhibit T cell activation, but prevented T cell clonal expansion due to rapid death of activated T cells. T cell responses were restored by genetic or pharmacologic inhibition of IDO enzyme activity, or by adding excess tryptophan. DCs from interferon gamma (IFNgamma)-receptor-deficient mice were effective in promoting IDO-dependent T cell suppression following CTLA4-Ig exposure in vivo, indicating that IFNgamma signaling was not necessary for IDO up-regulation in this model. These findings suggest that IDO-competent DCs provide a regulatory bridge, mediated by CTLA4-B7 engagement, between certain regulatory T cell subsets and naive responder T cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.