Oxidative stress (OS) is a significant cause of DNA fragmentation and is associated with poor embryo development and recurrent miscarriage. The aim of this study was to compare two different methods for assessing seminal OS and their ability to predict sperm DNA fragmentation and abnormal semen parameters. Semen samples were collected from 520 men attending for routine diagnostic testing following informed consent. Oxidative stress was assessed using either a chemiluminescence assay to measure reactive oxygen species (ROS) or an electrochemical assay to measure oxidation reduction potential (sORP). Sperm DNA fragmentation (DFI) and sperm with immature chromatin (HDS) were assessed using sperm chromatin structure assay (SCSA). Semen analysis was performed according to WHO 2010 guidelines. Reactive oxygen species sORP and DFI are negatively correlated with sperm motility (p = 0.0012, 0.0002, <0.0001 respectively) and vitality (p < 0.0001, 0.019, <0.0001 respectively). The correlation was stronger for sORP than ROS. Reactive oxygen species (p < 0.0001), sORP (p < 0.0001), DFI (p < 0.0089) and HDS (p < 0.0001) were significantly elevated in samples with abnormal semen parameters, compared to those with normal parameters. Samples with polymorphonuclear leukocytes (PMN) have excessive ROS levels compared to those without (p < 0.0001), but sORP and DFI in this group are not significantly increased. DNA fragmentation was significantly elevated in samples with OS measured by ROS (p = 0.0052) or sORP (p = 0.004). The results demonstrate the multi-dimensional nature of oxidative stress and that neither assay can be used alone in the diagnosis of OS, especially in cases of leukocytospermia.
Seminal oxidative stress (OS) is a major contributing factor to male infertility. Semen analysis cannot identify reactive oxygen species (ROS), which can be measured using a chemiluminescence assay. Measurement of redox potential provides a more comprehensive assessment of OS, although the test has yet to be fully validated. This study aimed to validate the MiOX sys analyser for measuring static oxidation-reduction potential (sORP). Results demonstrated that duplicate measurements must be taken, sensors must be batch tested, and sockets should be regularly changed to avoid inconsistency in measurement. Measurement of sORP using MiOX sys exhibited good reproducibility across different operators (p = 0.469), analysers (p = 0.963) and days (p = 0.942). It is not affected by mechanical agitation (p = 0.522) or snap freezing and thawing (p = 0.823). The stability of sORP over time requires further verification, particularly in samples with high initial sORP. Measurement is temperature sensitive between 2 and 37°C, significantly increasing with increasing temperature (p = 0.0004). MiOX sys is a more stable assay for assessing OS than chemiluminescence methods and permits greater flexibility for sample handling. MiOX sys could be implemented to complement semen analysis as part of routine diagnostic testing for male infertility and may be useful in identifying contributing factors to idiopathic infertility.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.