Highlights d Time-dependent stem cell depletion levels off in the old brain via increased quiescence d Age minimally changes the neural stem cell transcriptome d Once-activated neural stem cells perform similar in the old and young brain d The old niche keeps stem cells quiescent via inflammation and Wnt activity regulation
Hematopoietic stem cells (HSCs) are characterized by their ability of self-renewal to replenish the stem cell pool and differentiation to more mature cells. The subsequent stages of progenitor cells also share some of this dual ability. It is yet unknown whether external signals modulate proliferation rate or rather the fraction of self-renewal. We propose three multicompartment models, which rely on a single external feedback mechanism. In Model 1 the signal enhances proliferation, whereas the self-renewal rates in all compartments are fixed. In Model 2 the signal regulates the rate of self-renewal, whereas the proliferation rate is unchanged. In Model 3, the signal regulates both proliferation and self-renewal rates. This study demonstrates that a unique strictly positive stable steady state can only be achieved by regulation of the rate of self-renewal. Furthermore, it requires a lower number of effective cell doublings. In order to maintain the stem cell pool, the self-renewal ratio of the HSC has to be > or =50% and it has to be higher than the self-renewal ratios of all downstream compartments. Interestingly, the equilibrium level of mature cells depends only on the parameters of self-renewal of HSC and it is independent of the parameters of dynamics of all upstream compartments. The model is compatible with the increase of leukocyte numbers following HSC transplantation. This study demonstrates that extrinsic regulation of the self-renewal rate of HSC is most essential in the process of hematopoiesis.
Highlights d More proliferating hippocampal stem cells return to shallow quiescence with age d Dormant stem cells enter deeper quiescence with age d These changes drive the transition from developmental to adult neurogenesis d Increasing degradation of ASCL1 protein by HUWE1 coordinates these changes
Recent experimental evidence suggests that acute myeloid leukaemias may originate from multiple clones of malignant cells. Nevertheless, it is not known how the observed clones may differ with respect to cell properties, such as proliferation and self-renewal. There are scarcely any data on how these cell properties change due to chemotherapy and relapse. We propose a new mathematical model to investigate the impact of cell properties on the multi-clonal composition of leukaemias. Model results imply that enhanced self-renewal may be a key mechanism in the clonal selection process. Simulations suggest that fast proliferating and highly self-renewing cells dominate at primary diagnosis, while relapse following therapy-induced remission is triggered mostly by highly self-renewing but slowly proliferating cells. Comparison of simulation results to patient data demonstrates that the proposed model is consistent with clinically observed dynamics based on a clonal selection process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.