In this paper, the regularization approach introduced recently for nonparametric estimation of linear systems is extended to the estimation of nonlinear systems modelled as Volterra series. The kernels of order higher than one, representing higher dimensional impulse responses in the series, are considered to be realizations of multidimensional Gaussian processes. Based on this, prior information about the structure of the Volterra kernel is introduced via an appropriate penalization term in the least squares cost function. It is shown that the proposed method is able to deliver accurate estimates of the Volterra kernels even in the case of a small amount of data points.
a b s t r a c tBlock-oriented nonlinear models are popular in nonlinear modeling because of their advantages to be quite simple to understand and easy to use. To increase the flexibility of single branch block-oriented models, such as Hammerstein, Wiener, and Wiener-Hammerstein models, parallel block-oriented models can be considered. This paper presents a method to identify parallel Wiener-Hammerstein systems starting from input-output data only. In the first step, the best linear approximation is estimated for different input excitation levels. In the second step, the dynamics are decomposed over a number of parallel orthogonal branches. Next, the dynamics of each branch are partitioned into a linear time invariant subsystem at the input and a linear time invariant subsystem at the output. This is repeated for each branch of the model. The static nonlinear part of the model is also estimated during this step. The consistency of the proposed initialization procedure is proven. The method is validated on real-world measurements using a custom built parallel Wiener-Hammerstein test system.
In the last years, the success of kernel-based regularisation techniques in solving impulse response modelling tasks has revived the interest on linear system identification. In this work, an alternative perspective on the same problem is introduced. Instead of relying on a Bayesian framework to include assumptions about the system in the definition of the covariance matrix of the parameters, here the prior knowledge is injected at the cost function level. The key idea is to define the regularisation matrix as a filtering operation on the parameters, which allows for a more intuitive formulation of the problem from an engineering point of view. Moreover, this results in a unified framework to model low-pass, band-pass and high-pass systems, and systems with one or more resonances. The proposed filter-based approach outperforms the existing regularisation method based on the TC and DC kernels, as illustrated by means of Monte Carlo simulations on several linear modelling examples.
This paper discusses a novel initialization algorithm for the estimation of nonlinear state-space models. Good initial values for the model parameters are obtained by identifying separately the linear dynamics and the nonlinear terms in the model. In particular, the nonlinear dynamic problem is transformed into an approximate static formulation, and simple regression methods are applied to obtain the solution in a fast and efficient way. The proposed method is validated by means of two measurement examples: the Wiener-Hammerstein benchmark problem, and the identification of a crystal detector.A. Marconato and J. Schoukens are with
In this work a new initialization scheme for nonlinear state-space models is applied to the problem of identifying a Wiener-Hammerstein system on the basis of a set of real data. The proposed approach combines ideas from the statistical learning community with classic system identification methods. The results on the benchmark data are discussed and compared to the ones obtained by other related methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.