Objective-Restricted and repetitive behaviors, and a pronounced preference for behavioral and environmental consistency, are distinctive characteristics of autism spectrum disorders (ASD). Whether these clinical features of ASD are related to fundamental neuropsychological impairments in behavioral flexibility remains to be clarified.Method-Forty-one individuals with ASD and 37 matched controls performed a probabilistic reversal learning task to assess behavioral flexibility. Participants learned to choose the correct stimulus location from a pair of locations to win points (acquisition). After making the correct choice over multiple trials, the rewarded stimulus location changed without warning (reversal). Feedback was provided on an 80:20 probabilistic schedule, with 80% of correct choices and 20% of incorrect choices randomly reinforced.Results-ASD and control participants performed comparably during acquisition. At reversal, ASD participants initially chose the new correct location as quickly as controls, but then more frequently reverted back to the previously preferred response. The ASD group also more frequently shifted back to the previous response choice immediately following intermittent nonreinforcement of the new correct response. The number of regressive errors was positively correlated with independently ascertained clinical ratings of restricted and repetitive behaviors, but not other core features of ASD.Conclusions-Restricted and repetitive behaviors in ASD are associated with neurocognitive deficits in flexible choice behavior. Preclinical research has established that frontostriatal circuitry supports flexibility on reversal learning tasks. Thus, alterations in this circuitry may contribute to behavioral rigidity in ASD and represent a target for therapeutic intervention.Correspondence concerning this article should be addressed to John A. Sweeney, UT Southwestern Medical Center, 5323 Harry Hines Blvd. M/C 9086, Dallas, TX 75390-9086. John.Sweeney@utsouthwestern.edu. NIH Public Access Author ManuscriptNeuropsychology. Author manuscript; available in PMC 2014 March 01. . Understanding of the latter symptom domain remains limited, despite it contributing significantly to clinical distress and behavioral problems (Bishop, Richler, Cain, & Lord, 2007;South, Ozonoff, & McMahon, 2005). Clarifying the cognitive bases of behavioral rigidity in ASD has the potential to provide clues as to its pathophysiology, improve its clinical assessment, and guide development of new treatments that can alleviate this core feature of ASD.One possibility is that a specific impairment in the ability to transition away from preferred behaviors to new, more adaptive ones contributes to the occurrence of restrictive and repetitive behaviors. Some prior studies suggest that these behaviors are related to broad deficits in executive function and cognitive control in ASD (Lopez, Lincoln, Ozonoff, & Lai, 2005;Mosconi et al., 2009). However, results are inconsistent, and the specific cognitive impairments that may con...
Background-Impairments in executive cognitive control, including a reduced ability to inhibit prepotent responses, have been reported in autism spectrum disorders (ASD). These deficits may underlie patterns of repetitive behaviors associated with the disorder.
Context Studying sensorimotor and neurocognitive impairments in unaffected family members of individuals with autism may help identify familial pathophysiological mechanisms associated with the disorder. Objective To determine whether atypical sensorimotor or neurocognitive characteristics associated with autism are present in first-degree relatives of individuals with autism. Design Case-control comparison of neurobehavioral functions. Setting University medical center. Participants Fifty-seven first-degree relatives of individuals with autism and 40 age-, sex-, and IQ-matched healthy control participants (aged 8–54 years). Main Outcome Measures Oculomotor tests of sensorimotor responses (saccades and smooth pursuit); procedural learning and response inhibition; neuropsychological tests of motor, memory, and executive functions; and psychological measures of social behavior, communication skills, and obsessive-compulsive behaviors. Results On eye movement testing, family members demonstrated saccadic hypometria, reduced steady-state pursuit gain, and a higher rate of voluntary response inhibition errors relative to controls. They also showed lateralized deficits in procedural learning and open-loop pursuit gain (initial 100 milliseconds of pursuit) and increased variability in the accuracy of large-amplitude saccades that were confined to rightward movements. In neuropsychological studies, only executive functions were impaired relative to those of controls. Family members reported more communication abnormalities and obsessive-compulsive behaviors than controls. Deficits across oculomotor, neuropsychological, and psychological domains were relatively independent from one another. Conclusions Family members of individuals with autism demonstrate oculomotor abnormalities implicating pontocerebellar and frontostriatal circuits and left-lateralized alterations of frontotemporal circuitry and striatum. The left-lateralized alterations have not been identified in other neuropsychiatric disorders and are of interest given atypical brain lateralization and language development associated with the disorder. Similar oculomotor deficits have been reported in individuals with autism, suggesting that they may be familial and useful for studies of neurophysiological and genetic mechanisms in autism.
Reversal learning tasks assess behavioral flexibility by requiring subjects to switch from one learned response choice to a different response choice when task contingencies change. This requires both the processing of negative feedback once a learned response is no longer reinforced, and the capacity for flexible response selection. In 2-choice reversal learning tasks, subjects switch between only two responses. Multiple choice reversal learning is qualitatively different in that at reversal, it requires subjects to respond to nonreinforcement of a learned response by selecting a new response from among several alternatives that have uncertain consequences. While activity in brain regions responsible for processing unexpected negative feedback is known to increase in relation to the hedonic value of the reward itself, it is not known whether the uncertainty of reinforcement for future response choices also modulates these responses. In an fMRI study, 15 participants performed 2- and 4-choice reversal learning tasks. Upon reversal in both tasks, activation was observed in brain regions associated with processing changing reinforcement contingencies (midbrain, ventral striatum, insula), as well as in neocortical regions that support cognitive control and behavioral planning (prefrontal, premotor, posterior parietal, and anterior cingulate cortices). Activation in both systems was greater in the 4- than in the 2-choice task. Therefore, reinforcement uncertainty for future responses enhanced activity in brain systems that process performance feedback, as well as in areas supporting behavioral planning of future response choices. A mutually facilitative integration of responses in motivational and cognitive brain systems might enhance behavioral flexibility and decision making in conditions for which outcomes for future response choices are uncertain.
Background Procedural learning is an implicit process in which a behavioral response is refined through repeated performance. Neural systems supporting this cognitive process include specific frontostriatal systems responsible for the preparation and timing of planned motor responses. Evaluating performance on procedural learning tasks can provide unique information about neurodevelopmental disorders in which frontostriatal disturbances have been reported, such as autism. Methods Fifty-two individuals with autism and 54 age-, IQ-, and gender-matched healthy individuals performed an oculomotor serial reaction time task and a sensorimotor control task. Results Whereas the rate of procedural learning and the precision of planned motor responses were unimpaired in autism, a lateralized alteration in the ability to time predictive responses was observed. Rightward saccadic responses were speeded in individuals with autism relative to healthy control subjects. Conclusions Speeded rightward predictive saccades suggest atypical functioning of left hemisphere striatal chronometric systems in autism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.