C‐terminal‐binding protein/brefeldin A‐ADP ribosylated substrate (CtBP/BARS) plays key roles in development and oncogenesis as a transcription co‐repressor, and in intracellular traffic as a promoter of Golgi membrane fission. Co‐repressor activity is regulated by NAD(H) binding to CtBP/BARS, while membrane fission is associated with its acyl‐CoA‐dependent acyltransferase activity. Here, we report the crystal structures of rat CtBP/BARS in a binary complex with NAD(H), and in a ternary complex with a PIDLSKK peptide mimicking the consensus motif (PXDLS) recognized in CtBP/BARS cellular partners. The structural data show CtBP/BARS in a NAD(H)‐bound dimeric form; the peptide binding maps the recognition site for DNA‐binding proteins and histone deacetylases to an N‐terminal region of the protein. The crystal structure together with the site‐directed mutagenesis data and binding experiments suggest a rationale for the molecular mechanisms underlying the two fundamental co‐existing, but diverse, activities supported by CtBP/BARS in the nucleus and in Golgi membranes.
In this study we have analyzed the interaction between in vitro cultured bone marrow stromal cells (BMSC) and NK cells. Ex vivo-isolated NK cells neoexpressed the activation Ag CD69 and released IFN-γ and TNF-α upon binding with BMSC. Production of these proinflammatory cytokines was dependent on ligation of ICAM1 expressed on BMSC and its receptor LFA1 on NK cells. Furthermore, the NKp30, among natural cytotoxicity receptors, appeared to be primarily involved in triggering NK cells upon interaction with BMSC. Unexpectedly, autologous IL-2-activated NK cells killed BMSC. Again, LFA1/ICAM1 interaction plays a key role in NK/BMSC interaction; this interaction is followed by a strong intracellular calcium increase in NK cells. More importantly, NKG2D/MHC-I-related stress-inducible molecule A and/or NKG2D/UL-16 binding protein 3 engagement is responsible for the delivery of a lethal hit. It appears that HLA-I molecules do not protect BMSC from NK cell-mediated injury. Thus, NK cells, activated upon binding with BMSC, may regulate BMSC survival.
We provide evidence that tumor cells can induce apoptosis of NK cells by engaging the natural cytotoxicity receptors (NCR) NKp30, NKp44, and NKp46. Indeed, the binding between NCR on NK cells and their putative ligands on tumor target cells led to NK cell apoptosis, and this event was abolished by blocking NCR/NCR-ligand interaction by anti-NCR-specific mAbs. The engagement of NCR induced up-regulation of Fas ligand (FasL) mRNA, FasL protein synthesis, and release. In turn, FasL interacting with Fas at NK cell surface causes NK cell suicide, as apoptosis of NK cells was inhibited by blocking FasL/Fas interaction with specific mAbs. Interestingly, NK cell apoptosis, but not killing of tumor target cells, is inhibited by cyclosporin A, suggesting that apoptosis and cytolysis are regulated by different biochemical pathways. These findings indicate that NCR are not only triggering molecules essential for antitumor activity, but also surface receptors involved in NK cell suicide.
Use of the WB-SP filter makes it possible to obtain three leukoreduced blood components with only one filtration step. The WB-SP filter showed good leukoreduction performance and recovery of all blood components including PLTs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.