Small ruminant lentiviruses (SRLVs) cause chronic, persistent infections in populations of domestic sheep (Ovis aries) and goats (Capra hircus) worldwide. The vast majority of SRLV infections involve two genotypes (A and B) that spread in association with the emergence of global livestock trade. However, SRLVs have likely been present in Eurasian ruminant populations since at least the early Neolithic period. Here, we use phylogenetic and phylogeographic approaches to reconstruct the origin of pandemic SRLV strains and infer their historical pattern of global spread. We constructed an open computational resource (‘Lentivirus-GLUE’) via which an up-to-date database of published SRLV sequences, multiple sequence alignments, and sequence-associated metadata can be maintained. We used data collated in Lentivirus-GLUE to perform a comprehensive phylogenetic investigation of global SRLV diversity. Phylogenies reconstructed from genome-length alignments reveal that the deep divisions in the SRLV phylogeny are consistent with an ancient split into Eastern (A-like) and Western (B-like) lineages as agricultural systems disseminated out of domestication centres during the Neolithic period. These findings are also consistent with historical and phylogeographic evidence linking the early 20th century emergence of SRLV-A to international export of Central Asian Karakul sheep. Investigating the global diversity of SRLVs can help reveal how anthropogenic factors have impacted the ecology and evolution of livestock diseases. The open resources generated in our study can expedite these studies and can also serve more broadly to facilitate the use of genomic data in SRLV diagnostics and research.
19Small ruminant lentiviruses (SRLVs) cause chronic, persistent infections in 20 populations of domestic sheep and goats throughout the world. In this study, we use 21 genomic data to investigate the origins and history of the SRLV pandemic. To explore the 22 42 infections in domestic animals, so that more effective control and eradication programs can 43 be developed. 44 45
Table of contents Oral presentations Session 1: Entry & uncoating O1 Host cell polo-like kinases (PLKs) promote early prototype foamy virus (PFV) replication Irena Zurnic, Sylvia Hütter, Ute Lehmann, Nicole Stanke, Juliane Reh, Tobias Kern, Fabian Lindel, Gesche Gerresheim, Martin Hamann, Erik Müllers, Paul Lesbats, Peter Cherepanov, Erik Serrao, Alan Engelman, Dirk Lindemann O2 A novel entry/uncoating assay reveals the presence of at least two species of viral capsids during synchronized HIV-1 infection Claire Da Silva Santos, Kevin Tartour, Andrea Cimarelli O3 Dynamics of nuclear envelope association and nuclear import of HIV-1 complexes Rya Burdick, Jianbo Chen, Jaya Sastri, Wei-Shau Hu, Vinay Pathak O4 Human papillomavirus protein E4 potently enhances the susceptibility to HIV infection Oliver T. Keppler Session 2: Reverse transcription & integration O5 Structure and function of HIV-1 integrase post translational modifications Karine Pradeau, Sylvia Eiler, Nicolas Levy, Sarah Lennon, Sarah Cianferani, Stéphane Emiliani, Marc Ruff O6 Regulation of retroviral integration by RNA polymerase II associated factors and chromatin structure Vincent Parissi Session 3: Transcription and latency O7 A novel single-cell analysis pipeline to identify specific biomarkers of HIV permissiveness Sylvie Rato, Antonio Rausell, Miguel Munoz, Amalio Telenti, Angela Ciuffi O8 A capsid-dependent integration program linking T cell activation to HIV-1 gene expression Alexander Zhyvoloup, Anat Melamed, Ian Anderson, Delphine Planas, Janos Kriston-Vizi, Robin Ketteler, Chen-Hsuin Lee, Andy Merritt, Petronela Ancuta, Charles Bangham, Ariberto Fassati O9 Characterisation of new RNA polymerase III and RNA polymerase II transcriptional promoters in the Bovine Leukemia Virus genome Anthony Rodari, Benoit Van Driessche, Mathilde Galais, Nadége Delacourt, Sylvain Fauquenoy, Caroline Vanhulle, Anna Kula, Arsène Burny, Olivier Rohr, Carine Van Lint O10 Tissue-specific dendritic cells differentially modulate latent HIV-1 reservoirs Thijs van Montfort, Renee van der Sluis, Dave Speijer, Ben Berkhout Session 4: RNA trafficking & packaging O11 A novel cis -acting element affecting HIV replication Bo Meng, Andrzej Rutkowski, Neil Berry, Lars Dölken, Andrew Lever O12 Tolerance of HIV’s late gene expression towards stepwise codon adaptation Thomas Schuster, Benedikt Asbach, Ralf Wagner Session 5: Assembly & release O13 Importance of the tax-inducible actin-bundling protein fascin for transmission of human T cell leukemia virus Type 1 (HTLV-1) Christine Gross, Veit Wiesmann, Martina Kalmer, Thomas Wittenberg, Jan Gettemans, Andrea K. Thoma-Kress O14 Lentiviral nef prote...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.