SummaryEstrogen receptor α (ERα) is the key transcriptional driver in a large proportion of breast cancers. We report that APOBEC3B (A3B) is required for regulation of gene expression by ER and acts by causing C-to-U deamination at ER binding regions. We show that these C-to-U changes lead to the generation of DNA strand breaks through activation of base excision repair (BER) and to repair by non-homologous end-joining (NHEJ) pathways. We provide evidence that transient cytidine deamination by A3B aids chromatin modification and remodelling at the regulatory regions of ER target genes that promotes their expression. A3B expression is associated with poor patient survival in ER+ breast cancer, reinforcing the physiological significance of A3B for ER action.
The DEAD-box RNA helicases p68 (DDX5) and p72 (DDX17) have been shown to act as transcriptional co-activators for a diverse range of transcription factors, including estrogen receptor α (ERα). Here, we show that, although both proteins interact with and co-activate ERα in reporter gene assays, siRNA-mediated knockdown of p72, but not p68, results in a significant inhibition of estrogen-dependent transcription of endogenous ERα-responsive genes and estrogen-dependent growth of MCF-7 and ZR75-1 breast cancer cells. Furthermore, immunohistochemical staining of ERα-positive primary breast cancers for p68 and p72 indicate that p72 expression is associated with an increased period of relapse-free and overall survival (p=0.006 and p=0.016 respectively), as well as being inversely associated with Her2 expression (p=0.008). Conversely, p68 shows no association with relapse-free period, or overall, survival but it is associated with an increased expression of Her2 (p=0.001), AIB-1 (p<0.001) and higher tumour grade (p=0.044). Our data thus highlight a crucial role for p72 in ERα co-activation and estrogen-dependent cell growth and provide evidence in support of distinct but important roles for both p68 and p72 in regulating ERα activity in breast cancer.
Edited by Angel NebredaKeywords: FKBP25 MDM2 p53 E3 ligase Ubiquitylation Degradation a b s t r a c tThe p53 tumour suppressor protein is tightly controlled by the E3 ubiquitin ligase, mouse double minute 2 (MDM2), but maintains MDM2 expression as part of a negative feedback loop. We have identified the immunophilin, 25 kDa FK506-binding protein (FKBP25), previously shown to be regulated by p53-mediated repression, as an MDM2-interacting partner. We show that FKBP25 stimulates auto-ubiquitylation and proteasomal degradation of MDM2, leading to the induction of p53. Depletion of FKBP25 by siRNA leads to increased levels of MDM2 and a corresponding reduction in p53 and p21 levels. These data are consistent with the idea that FKBP25 contributes to regulation of the p53-MDM2 negative feedback loop.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.