Many genes are regulated as an innate part of the eukaryotic cell cycle, and a complex transcriptional network helps enable the cyclic behavior of dividing cells. This transcriptional network has been studied in Saccharomyces cerevisiae (budding yeast) and elsewhere. To provide more perspective on these regulatory mechanisms, we have used microarrays to measure gene expression through the cell cycle of Schizosaccharomyces pombe (fission yeast). The 750 genes with the most significant oscillations were identified and analyzed. There were two broad waves of cell cycle transcription, one in early/mid G2 phase, and the other near the G2/M transition. The early/mid G2 wave included many genes involved in ribosome biogenesis, possibly explaining the cell cycle oscillation in protein synthesis in S. pombe. The G2/M wave included at least three distinctly regulated clusters of genes: one large cluster including mitosis, mitotic exit, and cell separation functions, one small cluster dedicated to DNA replication, and another small cluster dedicated to cytokinesis and division. S. pombe cell cycle genes have relatively long, complex promoters containing groups of multiple DNA sequence motifs, often of two, three, or more different kinds. Many of the genes, transcription factors, and regulatory mechanisms are conserved between S. pombe and S. cerevisiae. Finally, we found preliminary evidence for a nearly genome-wide oscillation in gene expression: 2,000 or more genes undergo slight oscillations in expression as a function of the cell cycle, although whether this is adaptive, or incidental to other events in the cell, such as chromatin condensation, we do not know.
Natural products represent a vast repository of materials and compounds with evolved biological activity, including phytotoxicity. Some of these compounds can be used directly or as templates for herbicides. The molecular target sites of these compounds are often unique. Strategies for the discovery of these materials and compounds are outlined. Numerous examples of individual phytotoxins and crude preparations with weed management potential are provided. An example of research to find a natural product solution of a unique pest management problem (blue-green algae in aquaculture) is described. Finally, the problems associated with natural products for pest control are discussed.
Objectives: To analyze the early and late complications of indwelling ureteral stents in a series of 146 patients with nephroureteral lithiasis. Materials and Methods: 146 patients with obstructing nephrolitiasis were treated for urinary diversion with double pigtail ureteral stent before extracorporeal shock-wave lithotripsy (ESWL) and following ureterorenoscopic treatment of lithiasis. All patients were scheduled for stent removal or replacement at specific 3-month intervals until stone-free status was achieved. Results: Early complications during the first 4 weeks after stent insertion were stent discomfort (37.6%), irritative bladder symptoms (18.8%), hematuria (18.1%), bacteriuria (15.2%), fever >104F (12.3%) and flank pain (25.3%); late complications included hydronephrosis (5.7%), and stent migration (9.5%), encrustation (21.6%), fragmentation (1.9%) and breakage (1.3%). Conclusions: Ureteral stents have proven to be an invaluable tool for endourologists. Morbidity is minimal for up to three months but longer indwelling times are associated with an increasing frequency of incrustation, infections, secondary stone formation and obstruction of the stented tract.
Bioassay-directed isolation of antifungal compounds from an ethyl acetate extract of Ruta graveolens leaves yielded two furanocoumarins, one quinoline alkaloid, and four quinolone alkaloids, including a novel compound, 1-methyl-2-[6'-(3' ',4' '-methylenedioxyphenyl)hexyl]-4-quinolone. The (1)H and (13)C NMR assignments of the new compound are reported. Antifungal activities of the isolated compounds, together with 7-hydroxycoumarin, 4-hydroxycoumarin, and 7-methoxycoumarin, which are known to occur in Rutaceae species, were evaluated by bioautography and microbioassay. Four of the alkaloids had moderate activity against Colletotrichum species, including a benomyl-resistant C. acutatum. These compounds and the furanocoumarins 5- and 8-methoxypsoralen had moderate activity against Fusarium oxysporum. The novel quinolone alkaloid was highly active against Botrytis cinerea. Phomopsis species were much more sensitive to most of the compounds, with P. viticola being highly sensitive to all of the compounds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.