In this study we addressed the role of sphingolipid metabolism in the inflammatory response. In a L929 fibroblast model, tumor necrosis factor-alpha (TNF) induced prostaglandin E2 (PGE2) production by 4 h and cyclooxygenase-2 (COX-2) induction as early as 2 h. This TNF-induced PGE2 production was inhibited by NS398, a COX-2 selective inhibitor. GC-MS analysis revealed that only COX-2-generated prostanoids were produced in response to TNF, thus providing further evidence of COX-2 selectivity. As sphingolipids have been implicated in mediating several actions of TNF, their role in COX-2 induction and PGE2 production was evaluated. Sphingosine-1-phosphate (S1P) induced both COX-2 and PGE2 in a dose-responsive manner with an apparent ED50 of 100-300 nM. The related sphingolipid sphingosine also induced PGE2, though with much less efficacy. TNF induced a 3.5-fold increase in sphingosine-1-phosphate levels at 10 min that rapidly returned to baseline by 40 min. Small interfering RNAs (siRNAs) directed against mouse SK1 decreased (typically by 80%) SK1 protein and inhibited TNF-induced SK activity. Treatment of cells with RNAi to SK1 but not SK2 almost completely abolished the ability of TNF to induce COX-2 or generate PGE2. By contrast, cells treated with RNAi to S1P lyase or S1P phosphatase enhanced COX-2 induction leading to enhanced generation of PGE2. Treatment with SK1 RNAi also abolished the effects of exogenous sphingosine and ceramide on PGE2, revealing that the action of sphingosine and ceramide are due to intracellular metabolism into S1P. Collectively, these results provide novel evidence that SK1 and S1P are necessary for TNF to induce COX-2 and PGE2 production. Based on these findings, this study indicates that SK1 and S1P could be implicated in pathological inflammatory disorders and cancer.
Dominant optic atrophy (DOA) is characterized by retinal ganglion cell degeneration leading to optic neuropathy. A subset of DOA is caused by mutations in the OPA1 gene, encoding for a dynamin-related GTPase required for mitochondrial fusion. The functional consequences of OPA1 mutations in DOA patients are still poorly understood. This study investigated the effect of five different OPA1 pathogenic mutations on the energetic efficiency and mitochondrial network dynamics of skin fibroblasts from patients. Although DOA fibroblasts maintained their ATP levels and grew in galactose medium, i.e. under forced oxidative metabolism, a significant impairment in mitochondrial ATP synthesis driven by complex I substrates was found. Furthermore, balloon-like structures in the mitochondrial reticulum were observed in galactose medium and mitochondrial fusion was completely inhibited in about 50% of DOA fibroblasts, but not in control cells. Respiratory complex assembly and the expression level of complex I subunits were similar in control and DOA fibroblasts. Co-immunoprecipitation experiments revealed that OPA1 directly interacts with subunits of complexes I, II and III, but not IV and with apoptosis inducing factor. The results disclose a novel link between OPA1, apoptosis inducing factor and the respiratory complexes that may shed some light on the pathogenic mechanism of DOA.
Oncocytic tumors are a distinctive class of proliferative lesions composed of cells with a striking degree of mitochondrial hyperplasia that are particularly frequent in the thyroid gland. To understand whether specific mitochondrial DNA (mtDNA) mutations are associated with the accumulation of mitochondria, we sequenced the entire mtDNA in 50 oncocytic lesions (45 thyroid tumors of epithelial cell derivation and 5 mitochondrion-rich breast tumors) and 52 control cases (21 nononcocytic thyroid tumors, 15 breast carcinomas, and 16 gliomas) by using recently developed technology that allows specific and reliable amplification of the whole mtDNA with quick mutation scanning. Thirteen oncocytic lesions (26%) presented disruptive mutations (nonsense or frameshift), whereas only two samples (3.8%) presented such mutations in the nononcocytic control group. In one case with multiple thyroid nodules analyzed separately, a disruptive mutation was found in the only nodule with oncocytic features. In one of the five mitochondrion-rich breast tumors, a disruptive mutation was identified. All disruptive mutations were found in complex I subunit genes, and the association between these mutations and the oncocytic phenotype was statistically significant (P ؍ 0.001). To study the pathogenicity of these mitochondrial mutations, primary cultures from oncocytic tumors and corresponding normal tissues were established. Electron microscopy and biochemical and molecular analyses showed that primary cultures derived from tumors bearing disruptive mutations failed to maintain the mutations and the oncocytic phenotype. We conclude that disruptive mutations in complex I subunits are markers of thyroid oncocytic tumors.oncocytic tumors ͉ heteroplasmy ͉ homoplasmy ͉ damaging mutation ͉ microenvironment
Oncocytic tumors are characterized by cells with an aberrant accumulation of mitochondria. To assess mitochondrial function in neoplastic oncocytic cells, we studied the thyroid oncocytic cell line XTC.UC1 and compared it with other thyroid non-oncocytic cell lines. Only XTC.UC1 cells were unable to survive in galactose, a condition forcing cells to rely solely on mitochondria for energy production. The rate of respiration and mitochondrial ATP synthesis driven by complex I substrates was severely reduced in XTC.UC1 cells. Furthermore, the enzymatic activity of complexes I and III was dramatically decreased in these cells compared with controls, in conjunction with a strongly enhanced production of reactive oxygen species. Osteosarcoma-derived transmitochondrial cell hybrids (cybrids) carrying XTC.UC1 mitochondrial DNA (mtDNA) were generated to discriminate whether the energetic failure depended on mitochondrial or nuclear DNA mutations. In galactose medium, XTC.UC1 cybrid clones showed reduced viability and ATP content, similarly to the parental XTC.UC1, clearly pointing to the existence of mtDNA alterations. Sequencing of XTC.UC1 mtDNA identified a frameshift mutation in ND1 and a nonconservative substitution in cytochrome b, two mutations with a clear pathogenic potential. In conclusion, this is the first demonstration that mitochondrial dysfunction of XTC.UC1 is due to a combined complex I/III defect associated with mtDNA mutations, as proven by the transfer of the defective energetic phenotype with the mitochondrial genome into the cybrids. (Cancer Res 2006; 66(12): 6087-96)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.