The quantification of ground reaction forces (GRF) is a standard tool for clinicians to quantify and analyze human locomotion. Such recordings produce a vast amount of complex data and variables which are difficult to comprehend. This makes data interpretation challenging. Machine learning approaches seem to be promising tools to support clinicians in identifying and categorizing specific gait patterns. However, the quality of such approaches strongly depends on the amount of available annotated data to train the underlying models. therefore, we present GaitRec, a comprehensive and completely annotated large-scale dataset containing bilateral GRF walking trials of 2,084 patients with various musculoskeletal impairments and data from 211 healthy controls. The dataset comprises data of patients after joint replacement, fractures, ligament ruptures, and related disorders at the hip, knee, ankle or calcaneus during their entire stay(s) at a rehabilitation center. The data sum up to a total of 75,732 bilateral walking trials and enable researchers to classify gait patterns at a large-scale as well as to analyze the entire recovery process of patients.
Machine Learning (ML) is increasingly used to support decision-making in the healthcare sector. While ML approaches provide promising results with regard to their classification performance, most share a central limitation, their black-box character. This article investigates the usefulness of
Explainable Artificial Intelligence
(XAI) methods to increase transparency in automated
clinical gait classification
based on time series. For this purpose, predictions of state-of-the-art classification methods are explained with a XAI method called Layer-wise Relevance Propagation (LRP). Our main contribution is an approach that explains class-specific characteristics learned by ML models that are trained for gait classification. We investigate several gait classification tasks and employ different classification methods, i.e., Convolutional Neural Network, Support Vector Machine, and Multi-layer Perceptron. We propose to evaluate the obtained explanations with two complementary approaches: a statistical analysis of the underlying data using Statistical Parametric Mapping and a qualitative evaluation by two clinical experts. A gait dataset comprising ground reaction force measurements from 132 patients with different lower-body gait disorders and 62 healthy controls is utilized. Our experiments show that explanations obtained by LRP exhibit promising statistical properties concerning inter-class discriminativity and are also in line with clinically relevant biomechanical gait characteristics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.