Invasive pulmonary aspergillosis (IPA) is a life-threatening lung disease of hematological malignancy or bone marrow transplant patients caused by the ubiquitous environmental fungus Aspergillus fumigatus. Current diagnostic tests for the disease lack sensitivity as well as specificity, and culture of the fungus from invasive lung biopsy, considered the gold standard for IPA detection, is slow and often not possible in critically ill patients. In a previous study, we reported the development of a novel non-invasive procedure for IPA diagnosis based on antibody-guided positron emission tomography and magnetic resonance imaging (immunoPET/MRI) using a [64Cu]DOTA-labeled mouse monoclonal antibody (mAb), mJF5, specific to Aspergillus. To enable translation of the tracer to the clinical setting, we report here the development of a humanised version of the antibody (hJF5), and pre-clinical imaging of lung infection using a [64Cu]NODAGA-hJF5 tracer. The humanised antibody tracer shows a significant increase in in vivo biodistribution in A. fumigatus infected lungs compared to its radiolabeled murine counterpart [64Cu]NODAGA-mJF5. Using reverse genetics of the pathogen, we show that the antibody binds to the antigenic determinant β1,5-galactofuranose (Galf) present in a diagnostic mannoprotein antigen released by the pathogen during invasive growth in the lung. The absence of the epitope Galf in mammalian carbohydrates, coupled with the enhanced imaging capabilities of the hJF5 antibody, means that the [64Cu]NODAGA-hJF5 tracer developed here represents an ideal candidate for the diagnosis of IPA and translation to the clinical setting.
Combined PET and MR imaging (PET/MR imaging) has progressed tremendously in recent years. The focus of current research has shifted from technologic challenges to the application of this new multimodal imaging technology in the areas of oncology, cardiology, neurology, and infectious diseases. This article reviews studies in preclinical and clinical translation. The common theme of these initial results is the complementary nature of combined PET/MR imaging that often provides additional insights into biologic systems that were not clearly feasible with just one modality alone. However, in vivo findings require ex vivo validation. Combined PET/MR imaging also triggers a multitude of new developments in image analysis that are aimed at merging and using multimodal information that ranges from better tumor characterization to analysis of metabolic brain networks. The combination of connectomics information that maps brain networks derived from multiparametric MR data with metabolic information from PET can even lead to the formation of a new research field that we would call cometomics that would map functional and metabolic brain networks. These new methodologic developments also call for more multidisciplinarity in the field of molecular imaging, in which close interaction and training among clinicians and a variety of scientists is needed. Mol ecular imaging of small animals for biomedical research is an emerging field (1). It penetrates successfully into areas that are historically dominated by ex vivo molecular biology methods and therefore bears an enormous potential. Exploiting the full range of options of noninvasive visualization and quantification of metabolism, disease-specific dysfunction, therapy response, and cell trafficking requires that specific biomarkers yield information about molecular and functional processes as well as morphologic details. Single-modality imaging, such as stand-alone PET, SPECT, MR imaging, CT, or ultrasound, is often unable to provide the desired comprehensive information. Dedicated small-animal PET/CT and SPECT/CT scanners have been well received in the biomedical imaging sciences and have set the stage for a new combined imaging modality, PET/MR imaging, which has been introduced and successfully applied in biomedical studies (2,3). PET and MR imaging are both distinct modalities offering great versatility for advanced imaging applications in various fields of biomedicine. The combination of these two modalities into a single device merges functional and morphologic information from MR imaging with molecular PET data. The strength of PET lies in its high detection sensitivity and accurate quantification, but PET lacks good spatial resolution and tissue contrast. MR imaging, however, enables highresolution imaging of morphology with good soft-tissue contrast, detects endogenous metabolite distributions using spectroscopy, and allows dynamic acquisition of tissue perfusion and additional functional parameters (4).Thus, PET/MR imaging paves the way for noninvasive imaging to...
23Preclinical studies involving 89 Zr often report significant bone accumulation, which is associated
The specific and rapid detection of Enterobacteriaceae, the most frequent cause of gram-negative bacterial infections in humans, remains a major challenge. We developed a non-invasive method to rapidly detect systemic Yersinia enterocolitica infections using immunoPET (antibody-targeted positron emission tomography) with [64Cu]NODAGA-labeled Yersinia-specific polyclonal antibodies targeting the outer membrane protein YadA. In contrast to the tracer [18F]FDG, [64Cu]NODAGA-YadA uptake co-localized in a dose dependent manner with bacterial lesions of Yersinia-infected mice, as detected by magnetic resonance (MR) imaging. This was accompanied by elevated uptake of [64Cu]NODAGA-YadA in infected tissues, in ex vivo biodistribution studies, whereas reduced uptake was observed following blocking with unlabeled anti-YadA antibody. We show, for the first time, a bacteria-specific, antibody-based, in vivo imaging method for the diagnosis of a Gram-negative enterobacterial infection as a proof of concept, which may provide new insights into pathogen-host interactions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.