We report the structure, properties and a mechanism for the catecholase activity of a tetranuclear carbonato-bridged copper(II) cluster with the macrocyclic ligand [22]pr4pz (9,22-dipropyl-1,4,9,14,17,22,27,28,29, 30-decaazapentacyclo[22.2.1.1 4,7 .1 11,14 . 1 17,20 ]triacontane-5,7(28), 11(29),12,18, 20(30),24(27),25-octaene). In this complex, two copper ions within a macrocyclic unit are bridged by a carbonate anion, which further connects two macrocyclic units together. Magnetic susceptibility studies have shown the existence of a ferromagnetic interaction between the two copper ions within one macrocyclic ring, and a weak antiferromagnetic interaction between the two neighboring copper ions of two different macrocyclic units. The tetranuclear complex was found to be the major compound present in solution at high concentration levels, but its dissociation into two dinuclear units occurs upon dilution. The dinuclear complex catalyzes the oxidation of 3,5-di-tertbutylcatechol to the respective quinone in methanol by two different pathways, one proceeding via the formation of semiquinone species with the subsequent production of dihydrogen peroxide as a byproduct, and another proceeding via the two-electron reduction of the dicopper(II) center by the substrate, with two molecules of quinone and one molecule of water generated per one catalytic cycle. The occurrence of the first pathway was, however, found to cease shortly after the beginning of the catalytic reaction. The influence of hydrogen peroxide and ditert-butyl-o-benzoquinone on the catalytic mechanism has been investigated. The crystal structures of the free ligand and the reduced dicopper(I) complex, as well as the electrochemical properties of both the Cu II and the Cu I complexes are also reported.
The reaction of copper(II) perchlorate with the macrocyclic ligand [22]py4pz in the presence of base leads to formation of a dinuclear complex [Cu(2)([22]py4pz)(mu-OH)](ClO(4))(3)xH(2)O, in which two copper ions are bridged by a single mu-hydroxo bridge. Each copper ion is further surrounded by four nitrogen atoms of the ligand. The mu-hydroxo bridge mediates a strong antiferromagnetic coupling (2J = -691(35) cm(-1)) between the metal centers, leading to relatively sharp and well-resolved resonances in the (1)H NMR spectrum of the complex in solution. We herein report the crystal structure, the magnetic properties, and the full assignment of the hyperfine-shifted resonances in the NMR spectrum of the complex, as well as the determination of the exchange coupling constant in solution through temperature-dependent NMR studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.