Bacterial metabolism of anthocyanins involves the cleavage of glycosidic linkages and breakdown of the anthocyanidin heterocycle.
Various secondary plant metabolites or phytochemicals, including polyphenols and carotenoids, have been associated with a variety of health benefits, such as reduced incidence of type 2 diabetes, cardiovascular diseases, and several types of cancer, most likely due to their involvement in ameliorating inflammation and oxidative stress. However, discrepancies exist between their putative effects when comparing observational and intervention studies, especially when using pure compounds. These discrepancies may in part be explained by differences in intake levels and their bioavailability. Prior to exerting their bioactivity, these compounds must be made bioavailable, and considerable differences may arise due to their matrix release, changes during digestion, uptake, metabolism, and biodistribution, even before considering dose‐ and host‐related factors. Though many insights have been gained on factors affecting secondary plant metabolite bioavailability, many gaps still exist in our knowledge. In this position paper, we highlight several major gaps in our understanding of phytochemical bioavailability, including effects of food processing, changes during digestion, involvement of cellular transporters in influx/efflux through the gastrointestinal epithelium, changes during colonic fermentation, and their phase I and phase II metabolism following absorption.
Introduction Phenolic acids are important phenolic compounds widespread in foods, contributing to nutritional and organoleptic properties. Factors affceting individual variability The bioavailability of these compounds depends on their free or conjugated presence in food matrices, which is also affected by food processing. Phenolic acids undergo metabolism by the host and residing intestinal microbiota, which causes conjugations and structural modifications of the compounds. Human responses, metabolite profiles and health responses of phenolics, show considerable individual variation, which is affected by absorption, metabolism and genetic variations of subjects. Opinion A better understanding of the gut-host interplay and microbiome biochemistry is becoming highly relevant in understanding the impact of diet and its constituents. It is common to study metabolism and health benefits separately, with some exceptions; however, it should be preferred that health responders and non-responders are studied in combination with explanatory metabolite profiles and gene variants. This approach could turn interindividual variation from a problem in human research to an asset for research on personalized nutrition.
Sourdough fermentation by lactic acid bacteria is commonly used in bread baking, affecting several attributes of the final product. We analyzed whole-grain wheat and rye breads and doughs prepared with baker’s yeast or a sourdough starter including Candida milleri, Lactobacillus brevis and Lactobacillus plantarum using non-targeted metabolic profiling utilizing LC–QTOF–MS. The aim was to determine the fermentation-induced changes in metabolites potentially contributing to the health-promoting properties of whole-grain wheat and rye. Overall, we identified 118 compounds with significantly increased levels in sourdough, including branched-chain amino acids (BCAAs) and their metabolites, small peptides with high proportion of BCAAs, microbial metabolites of phenolic acids and several other potentially bioactive compounds. We also identified 69 compounds with significantly decreased levels, including phenolic acid precursors, nucleosides, and nucleobases. Intensive sourdough fermentation had a higher impact on the metabolite profile of whole-grain rye compared to milder whole-grain wheat sourdough fermentation. We hypothesize that the increased amount of BCAAs and potentially bioactive small peptides may contribute to the insulin response of rye bread, and in more general, the overall protective effect against T2DM and CVD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.