Language is one of the most fascinating abilities that humans possess. Infants demonstrate an amazing repertoire of linguistic abilities from very early on and reach an adult-like form incredibly fast. However, language is not acquired all at once but in an incremental fashion. In this article we propose that the attentional system may be one of the sources for this developmental trajectory in language acquisition. At birth, infants are endowed with an attentional system fully driven by salient stimuli in their environment, such as prosodic information (e.g., rhythm or pitch). Early stages of language acquisition could benefit from this readily available, stimulus-driven attention to simplify the complex speech input and allow word segmentation. At later stages of development, infants are progressively able to selectively attend to specific elements while disregarding others. This attentional ability could allow them to learn distant non-adjacent rules needed for morphosyntactic acquisition. Because non-adjacent dependencies occur at distant moments in time, learning these dependencies may require correctly orienting attention in the temporal domain. Here, we gather evidence uncovering the intimate relationship between the development of attention and language. We aim to provide a novel approach to human development, bridging together temporal attention and language acquisition.
Anticipating both where and when an object will appear is a critical ability for adaptation. Research in the temporal domain in adults indicate that dissociable mechanisms relate to endogenous attention driven by the properties of the stimulus themselves (e.g. rhythmic, sequential, or trajectory cues) and driven by symbolic cues. In infancy, we know that the capacity to endogenously orient attention progressively develops through infancy. However, the above-mentioned distinction has not yet been explored since previous studies involved stimulus-driven cues. The current study tested 12- and 15-month-olds in an adaptation of the anticipatory eye movement procedure to determine whether infants were able to anticipate a specific location and temporal interval predicted only by symbolic pre-cues. In the absence of stimulus-driven cues, results show that only 15-month-olds could show anticipatory behavior based on the temporal information provided by the symbolic cues. Distinguishing stimulus-driven expectations from those driven by symbolic cues allowed dissecting more clearly the developmental progression of temporal endogenous attention.
A crucial aspect when learning a language is discovering the rules that govern how words are combined in order to convey meanings. Because rules are characterized by sequential co-occurrences between elements (e.g., “These cupcakes are unbelievable”), tracking the statistical relationships between these elements is fundamental. However, purely bottom-up statistical learning alone cannot fully account for the ability to create abstract rule representations that can be generalized, a paramount requirement of linguistic rules. Here, we provide evidence that, after the statistical relations between words have been extracted, the engagement of goal-directed attention is key to enable rule generalization. Incidental learning performance during a rule-learning task on an artificial language revealed a progressive shift from statistical learning to goal-directed attention. In addition, and consistent with the recruitment of attention, functional MRI (fMRI) analyses of late learning stages showed left parietal activity within a broad bilateral dorsal frontoparietal network. Critically, repetitive transcranial magnetic stimulation (rTMS) on participants’ peak of activation within the left parietal cortex impaired their ability to generalize learned rules to a structurally analogous new language. No stimulation or rTMS on a nonrelevant brain region did not have the same interfering effect on generalization. Performance on an additional attentional task showed that this rTMS on the parietal site hindered participants’ ability to integrate “what” (stimulus identity) and “when” (stimulus timing) information about an expected target. The present findings suggest that learning rules from speech is a two-stage process: following statistical learning, goal-directed attention—involving left parietal regions—integrates “what” and “when” stimulus information to facilitate rapid rule generalization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.