The cell establishes heritable patterns of active and silenced chromatin via interacting factors that set, remove, and read epigenetic marks. To understand how the underlying networks operate, we have dissected transcriptional silencing in pericentric heterochromatin (PCH) of mouse fibroblasts. We assembled a quantitative map for the abundance and interactions of 16 factors related to PCH in living cells and found that stably bound complexes of the histone methyltransferase SUV39H1/2 demarcate the PCH state. From the experimental data, we developed a predictive mathematical model that explains how chromatin-bound SUV39H1/2 complexes act as nucleation sites and propagate a spatially confined PCH domain with elevated histone H3 lysine 9 trimethylation levels via chromatin dynamics. This “nucleation and looping” mechanism is particularly robust toward transient perturbations and stably maintains the PCH state. These features make it an attractive model for establishing functional epigenetic domains throughout the genome based on the localized immobilization of chromatin-modifying enzymes.
Resistance to chemotherapy‐induced cell death is a major barrier to effective treatment of solid tumours such as colorectal cancer, CRC. Herein, we present a study aimed at developing a proteomics‐based predictor of response to standard‐of‐care (SoC) chemotherapy in combination with antagonists of IAPs (inhibitors of apoptosis proteins), which have been implicated as mediators of drug resistance in CRC. We quantified the absolute expression of 19 key apoptotic proteins at baseline in a panel of 12 CRC cell lines representative of the genetic diversity seen in this disease to identify which proteins promote resistance or sensitivity to a model IAP antagonist [birinapant (Bir)] alone and in combination with SoC chemotherapy (5FU plus oxaliplatin). Quantitative western blotting demonstrated heterogeneous expression of IAP interactome proteins across the CRC cell line panel, and cell death analyses revealed a widely varied response to Bir/chemotherapy combinations. Baseline protein expression of cIAP1, caspase‐8 and RIPK1 expression robustly correlated with response to Bir/chemotherapy combinations. Classifying cell lines into ‘responsive’, ‘intermediate’ and ‘resistant’ groups and using linear discriminant analysis (LDA) enabled the identification of a 12‐protein signature that separated responders to Bir/chemotherapy combinations in the CRC cell line panel with 100% accuracy. Moreover, the LDA model was able to predict response accurately when cells were cocultured with Tumour necrosis factor‐alpha to mimic a pro‐inflammatory tumour microenvironment. Thus, our study provides the starting point for a proteomics‐based companion diagnostic that predicts response to IAP antagonist/SoC chemotherapy combinations in CRC.
Ligand binding to death receptors activates apoptosis in cancer cells. Stimulation of death receptors results in the formation of intracellular multiprotein platforms that either activate the apoptotic initiator Caspase-8 to trigger cell death, or signal through kinases to initiate inflammatory and cell survival signalling. Two of these platforms, the Death-Inducing Signalling Complex (DISC) and the RIPoptosome, also initiate necroptosis by building filamentous scaffolds that lead to the activation of mixed lineage kinase domain-like pseudokinase. To explain cell decision making downstream of death receptor activation, we developed a semi-stochastic model of DISC/RIPoptosome formation. The model is a hybrid of a direct Gillespie stochastic simulation algorithm for slow assembly of the RIPoptosome and a deterministic model of downstream caspase activation. The model explains how alterations in the level of death receptor-ligand complexes, their clustering properties and intrinsic molecular fluctuations in RIPoptosome assembly drive heterogeneous dynamics of Caspase-8 activation. The model highlights how kinetic proofreading leads to heterogeneous cell responses and results in fractional cell killing at low levels of receptor stimulation. It reveals that the noise in Caspase-8 activation—exclusively caused by the stochastic molecular assembly of the DISC/RIPoptosome platform—has a key function in extrinsic apoptotic stimuli recognition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.