This review discusses a set of instrumental and computational methods that are used to characterize hydrated forms of APIs (active pharmaceutical ingredients). The focus has been put on highlighting advantages as well as on presenting some limitations of the selected analytical approaches. This has been performed in order to facilitate the choice of an appropriate method depending on the type of the structural feature that is to be analyzed, that is, degree of hydration, crystal structure and dynamics, and (de)hydration kinetics. The presented techniques include X-ray diffraction (single crystal X-ray diffraction (SCXRD), powder X-ray diffraction (PXRD)), spectroscopic (solid state nuclear magnetic resonance spectroscopy (ssNMR), Fourier-transformed infrared spectroscopy (FT-IR), Raman spectroscopy), thermal (differential scanning calorimetry (DSC), thermogravimetric analysis (TGA)), gravimetric (dynamic vapour sorption (DVS)), and computational (molecular mechanics (MM), Quantum Mechanics (QM), molecular dynamics (MD)) methods. Further, the successful applications of the presented methods in the studies of hydrated APIs as well as studies on the excipients’ influence on these processes have been described in many examples.
Cyclodextrins (CDs) are highly respected for their ability to form inclusion complexes via host–guest noncovalent interactions and, thus, ensofance other molecular properties. Various molecular modeling methods have found their applications in the analysis of those complexes. However, as showed in this review, molecular dynamics (MD) simulations could provide the information unobtainable by any other means. It is therefore not surprising that published works on MD simulations used in this field have rapidly increased since the early 2010s. This review provides an overview of the successful applications of MD simulations in the studies on CD complexes. Information that is crucial for MD simulations, such as application of force fields, the length of the simulation, or solvent treatment method, are thoroughly discussed. Therefore, this work can serve as a guide to properly set up such calculations and analyze their results.
This review focuses on a combination of ab initio molecular dynamics (aiMD) and NMR parameters calculations using quantum mechanical methods. The advantages of such an approach in comparison to the commonly applied computations for the structures optimized at 0 K are presented. This article was designed as a convenient overview of the applied parameters such as the aiMD type, DFT functional, time step, or total simulation time, as well as examples of previously studied systems. From the analysis of the published works describing the applications of such combinations, it was concluded that including fast, small-amplitude motions through aiMD has a noticeable effect on the accuracy of NMR parameters calculations.
In the introduction to this review the complex chemistry of solid-state pharmaceutical compounds is summarized. It is also explained why the density functional theory (DFT) periodic calculations became recently so popular in studying the solid APIs (active pharmaceutical ingredients). Further, the most popular programs enabling DFT periodic calculations are presented and compared. Subsequently, on the large number of examples, the applications of such calculations in pharmaceutical sciences are discussed. The mentioned topics include, among others, validation of the experimentally obtained crystal structures and crystal structure prediction, insight into crystallization and solvation processes, development of new polymorph synthesis ways, and formulation techniques as well as application of the periodic DFT calculations in the drug analysis.
Crystalline urea undergoes polymorphic phase transition induced by high pressure. Form I, which is the most stable form at normal conditions and Form IV, which is the most stable form at 3.10 GPa, not only crystallize in various crystal systems but also differ significantly in the unit cell dimensions. The aim of this study was to determine if it is possible to predict polymorphic phase transitions by optimizing Form I at high pressure and Form IV at low pressure. To achieve this aim, a large number of periodic density functional theory (DFT) calculations were performed using CASTEP. After geometry optimization of Form IV at 0 GPa Form I was obtained, performing energy minimization of Form I at high pressure did not result in Form IV. However, employing quantum molecular isothermal–isobaric (NPT) dynamics calculations enabled to accurately predict this high-pressure transformation. This study shows the potential of different approaches in predicting the polymorphic phase transition and points to the key factors that are necessary to achieve the success.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.