Horizontal gene Transfer (HT) denotes the transmission of genetic material between two living organisms, while the vertical transmission refers to a DNA transfer from parents to their offspring. Consistent experimental evidence report that this phenomenon plays an essential role in the evolution of certain bacterias. In particular, HT is believed to be the main instrument of developing the antibiotic resistance. In this work, we consider several models which describe this phenomenon: a stochastic jump process (individual-based) and the deterministic nonlinear integrodifferential equation obtained as a limit for large populations. We also consider a Hamilton-Jacobi equation, obtained as a limit of the deterministic model under the assumption of small mutations. The goal of this paper is to compare these models with the help of numerical simulations. More specifically, our goal is to understand to which extent the Hamilton-Jacobi model reproduces the qualitative behavior of the stochastic model and the phenomenon of evolutionary rescue in particular.
Multidimensional hypoelliptic diffusions arise naturally in different fields, for example to model neuronal activity. Estimation in those models is complex because of the degenerate structure of the diffusion coefficient. In this paper we consider hypoelliptic diffusions, given as a solution of two-dimensional stochastic differential equations (SDEs), with the discrete time observations of both coordinates being available on an interval T = n∆ n , with ∆ n the time step between the observations. The estimation is studied in the asymptotic setting, with T → ∞ as ∆ n → 0. We build a consistent estimator of the drift and variance parameters with the help of a discretized log-likelihood of the continuous process. We discuss the difficulties generated by the hypoellipticity and provide a proof of the consistency and the asymptotic normality of the estimator. We test our approach numerically on the hypoelliptic FitzHugh-Nagumo model, which describes the firing mechanism of a neuron.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.