Ceramide is a bioactive lipid with important roles in several biological processes including cell proliferation and apoptosis. Although 3-ketoceramides that contain a keto group in place of the 3-OH group of ceramide occur naturally, ceramide derivatives oxidized at the primary 1-OH group have not been identified to date. To evaluate how the oxidative state of the 1-OH group affects the physical properties of membranes, we prepared novel ceramide derivatives in which the 1-OH group was oxidized to a carboxylic acid (PCerCOOH) or methylester (PCerCOOMe) and examined the rigidity of their monolayers and the formation of gel domains in palmitoyloleoylphosphatidylcholine (POPC) or sphingomyelin (SM) bilayers. As a result, PCerCOOH and PCerCOOMe exhibited membrane properties similar to those of native ceramide, although the deprotonated form of PCerCOOH, PCerCOO, exhibited markedly lower rigidity and higher miscibility with POPC and SM. This was attributed to the electrostatic repulsion of the negative charge, which hampered the formation of the ceramide-enriched gel domain. The similarities in the properties of PCerCOOMe and ceramide revealed the potential to introduce various functional groups onto PCerCOOH via ester or amide linkages; therefore, these derivatives will also provide a new strategy for developing molecular probes, such as fluorescent ceramides, and inhibitors of ceramide-related enzymes.
Ceramides are important intermediates in sphingolipid biosynthesis (and degradation) and are normally present in only small amounts in unstressed cells. However, following the receptor-mediated activation of neutral sphingomyelinase, sphingomyelin can acutely give rise to substantial amounts of ceramides, which dramatically alter membrane properties. In this study, we have examined the role of the 1-OH and 3-OH functional groups of ceramide for its membrane properties. We have specifically examined how the oxidation of the primary alcohol to COOH or COOMe in palmitoyl ceramide (PCer) or the removal of either the primary alcohol or C(3)–OH (deoxy analogs) affected ceramides’ interlipid interactions in fluid phosphatidylcholine bilayers. Measuring the time-resolved fluorescence emission of trans-parinaric acid, or its steady-state anisotropy, we have obtained information about the propensity of the ceramide analogs to form ceramide-rich domains and the thermostability of the formed domains. We observed that the oxidation of the primary alcohol to COOH shifted the ceramide’s gel-phase onset concentration to slightly higher values in 1-palmitoyl-2-oleoyl-sn-3-glycero-3-phosphocholine (POPC) bilayers. Methylation of the COOH function of the ceramide did not change the segregation tendency further. The complete removal of the primary alcohol dramatically reduced the ability of 1-deoxy-PCer to form ceramide-rich ordered domains. However, the removal 3-OH (in 3-deoxy-PCer) had only small effects on the lateral segregation of the ceramide analog. The thermostability of the ceramide-rich domains in the POPC bilayers decreased in the following order: 1-OH > COOH > COOMe = 3-deoxy > 1-deoxy. We conclude that ceramide needs a hydrogen-bonding-competent functional group in the C(1) position to be able to form laterally segregated ceramide-rich domains of high packing density in POPC bilayers. The presence or absence of 3-OH was not functionally critical for ceramide’s lateral segregation properties.
The glycolipid transfer protein, GLTP, can be found in the cytoplasm, and it has a FFAT-like motif (two phenylalanines in an acidic tract) that targets it to the endoplasmic reticulum (ER). We have previously shown that GLTP can bind to a transmembrane ER protein, vesicle-associated membrane protein-associated protein A (VAP-A), which is involved in a wide range of ER functions. We have addressed the mechanisms that might regulate the association between GLTP and the VAP proteins by studying the capacity of GLTP to recognize different N-linked acyl chain species of glucosylceramide. We used surface plasmon resonance and a lipid transfer competition assay to show that GLTP prefers shorter N-linked fully saturated acyl chain glucosylceramides, such as C8, C12, and C16, whereas long C18, C20, and C24-glucosylceramides are all bound more weakly and transported more slowly than their shorter counterparts. Changes in the intrinsic GLTP tryptophan fluorescence blueshifts, also indicate a break-point between C16- and C18-glucosylceramide in the GLTP sensing ability. It has long been postulated that GLTP would be a sensor in the sphingolipid synthesis machinery, but how this mechanistically occurs has not been addressed before. It is unclear what proteins the GLTP VAP association would influence. Here we found that if GLTP has a bound GlcCer the association with VAP-A is weaker. We have also used a formula for identifying putative FFAT-domains, and we identified several potential VAP-interactors within the ceramide and sphingolipid synthesis pathways that could be candidates for regulation by GLTP.
Understanding the holistic picture of lipid homeostasis not only involves the analysis of synthesis and breakdown of lipids but also requires a thorough understanding of their transport. The transport of lipid monomers in an aqueous environment is facilitated by different lipid transfer proteins. Their universal feature is the shielding or encapsulation of the hydrophobic part of the lipid, consequently overcoming the poor solubility of lipids in water. Here we describe a method to purify lipid transfer proteins using bacterial expression. We also present three methods to validate their transfer activity.
The mode of interactions between palmitoyl lysophosphatidylcholine (palmitoyl lyso-PC) or other lysophospholipids (lyso-PLs) and palmitoyl ceramide (PCer) or other ceramide analogs in dioleoylphosphatidylcholine (DOPC) bilayers has been examined. PCer is known to segregate laterally into a ceramide-rich phase at concentrations that depend on the nature of the ceramides and the co-phospholipids. In DOPC bilayers, PCer forms a ceramide-rich phase at concentrations above 10 mol%. In the presence of 20 mol% palmitoyl lyso-PC in the DOPC bilayer, the lateral segregation of PCer was markedly facilitated (segregation at lower PCer concentrations). The thermostability of the PCer-rich phase in the presence of palmitoyl lyso-PC was also increased compared to that in the absence of palmitoyl lyso-PC. Other saturated lyso-PLs (e.g., palmitoyl lyso-phosphatidylethanolamine and lyso-sphingomyelin) also facilitated the lateral segregation of PCer in a similar manner as palmitoyl lyso-PC. When examined in the DOPC bilayer, it appeared that the association between palmitoyl lyso-PC and PCer was equimolar in nature. It is proposed that the interaction of PCer with lyso-PLs was driven by the need of ceramide to obtain a large-headgroup co-lipid, and saturated lyso-PLs were preferred co-lipids over DOPC because of the nature of their acyl chain. Structural analogs of PCer (1-or 3-deoxy-PCer) were also associated with palmitoyl lyso-PC, similarly to PCer, suggesting that the ceramide/lyso-PL interaction was not sensitive to structural alterations in the ceramide molecule. Binary complexes containing palmitoyl lyso-PC and ceramide were prepared, and these had a bilayer structure as ascertained by transmission electron microscopy. It is concluded that ceramides and lyso-PLs associated with each other both in binary bilayers and in ternary systems based on the DOPC bilayers. This association may have biological relevance under conditions in which both sphingomyelinases and phospholipase A 2 enzymes are activated, such as during inflammatory processes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.