Cytochrome c oxidase (CcO) transfers protons from the inner surface of the enzyme to the buried O2 reduction site through two different pathways, termed K and D, and from the outer surface via an undefined route. These proton paths can be inhibited by metals such as zinc or cadmium, but the sites of inhibition have not been established. Anomalous difference Fourier analyses of Rhodobacter sphaeroides CcO crystals, with cadmium added, reveal metal binding sites that include the proposed initial proton donor/acceptor of the K pathway, Glu-101 of subunit II. Mutant forms of CcO that lack Glu-101II (E101A and E101A/H96A) exhibit low activity and eliminate metal binding at this site. Significant activity is restored to E101A and E101A/H96A by adding the lipophilic carboxylic compounds, arachidonic acid and cholic acid, but not by their non-carboxylic analogues. These amphipathic acids likely provide their carboxylic groups as substitute proton donors/acceptors in the absence of Glu-101II, as previously observed for arachidonic acid in mutants that alter Asp-132I of the D pathway. The activity of E101A/H96A is still inhibited by zinc, but this remaining inhibition is nearly eliminated by removal of subunit III, which is known to alter the D pathway. The results identify the Glu-101/His-96 site of subunit II as the site of metal binding that inhibits the uptake of protons into the K pathway and indicate that subunit III contributes to zinc binding and/or inhibition of the D pathway. By removing subunit III from E101A/H96A, thereby eliminating zinc inhibition of the uptake of protons from the inner surface of CcO, we confirm that an external zinc binding site is involved in inhibiting the backflow of protons to the active site.
Subunit III of the three-subunit catalytic core of cytochrome c oxidase (CcO) contains no metal centers, but it does bind two lipids, within a deep cleft, in binding sites conserved from bacteria to humans. Subunit III binds to subunit I, where it prevents the spontaneous suicide inactivation of CcO by decreasing the probability of side reactions at the heme-Cu O2 reduction site in subunit I. Subunit III prevents suicide inactivation by (1) maintaining adequate rates of proton delivery to the heme-Cu active site and (2) stabilizing the structure of the active site during turnover [Mills and Hosler (2005) Biochemistry 44, 4656]. Here, we first show that mutating several individual residues of the conserved lipid binding sites in subunit III disturbs the subunit I-III interface. Then, two lipid binding site mutants were constructed with an affinity tag on subunit III such that the mutant CcOs could be isolated with 100% subunit III. R226A eliminates an ion pair to the phosphate of the outermost lipid of the cleft, while W59A-F86A disrupts interactions with the fatty acid tails of both lipids. Once these mutant CcOs are placed into soybean phospholipid vesicles, where extensive exchange of bacterial for soybean lipids takes place, it is shown that altering the lipid binding sites mimics a major loss of subunit III, even though subunit III is completely retained, in that suicide inactivation becomes much more probable. The rate of proton delivery to the active site remains rapid, ruling out slow proton uptake as the primary reason for increased suicide inactivation upon alteration of the lipid binding sites. We conclude that altering the lipid binding sites of subunit III may promote side reactions leading to suicide inactivation by allowing greater movement to occur in and around the O2 reduction site of subunit I during the catalytic cycle.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.