Unidentified lactic acid bacterium (LAB) isolates which had mainly been detected in spoiled, marinated, modified atmosphere packaged (MAP) broiler meat products during two previous studies, were identified and analyzed for their phenotypic properties and the capability to produce biogenic amines. To establish the taxonomic position of these isolates, 16S rRNA gene sequence analysis, numerical analysis of ribopatterns, and DNA-DNA hybridization experiments were done. Unexpectedly for a meat-spoilage-associated LAB, the strains utilized glucose very weakly. According to the API 50 CHL test, arabinose and xylose were the only carbohydrates strongly fermented. None of the six strains tested for production of histamine, tyramine, tryptamine, phenylethylamine, putrescine, and cadaverine were able to produce these main meat-associated biogenic amines in vitro. The polyphasic taxonomy approach showed that these strains represent a new Lactobacillus species. The six isolates sequenced for the 16S rRNA encoding genes shared the highest similarity (95.0 to 96.3%) with the sequence of the Lactobacillus durianis type strain. In the phylogenetic tree, these isolates formed a distinct cluster within the Lactobacillus reuteri group, which also includes L. durianis. Numerical analyses of HindIII-EcoRI ribotypes placed all isolates together in a cluster with seven subclusters well separated from the L. reuteri group reference strains. The DNA-DNA hybridization levels between Lactobacillus sp. nov. isolates varied from 67 to 96%, and low hybridization levels (3 to 15%) were obtained with the L. durianis type strain confirming that these isolates belong to the same species different from L. durianis. The name Lactobacillus oligofermentans sp. nov. is proposed, with strain LMG 22743 T (also known as DSM 15707 T or AMKR18 T
The present study was conducted to assess the role of lactic acid bacteria (LAB) in spoilage of a vacuum-packaged vegetable sausage product. This spoilage problem was characterized by formation of gas and slime, and was limiting the shelf life of the product. To investigate the LAB populations, LAB were enumerated in vegetable sausages graded as either spoiled or acceptable. From these vegetable sausages, 110 prevailing LAB isolates were recovered and identified using an LAB ribotyping database, which uses HindIII restriction fragment length polymorphism patterns of the 16S and 23S rRNA genes as operational taxonomic units. Finally, to determine the effects of the prevailing LAB on the sensory properties of the product, fresh vegetable sausages were inoculated with six LAB strains. The results revealed that Leuconostoc gelidum, Leuconostoc gasicomitatum, and Leuconostoc mesenteroides were the predominant LAB in the commercial vegetable sausages. The inoculation of these LAB onto vegetable sausages resulted in the formation of gas, slime, and a sour off-odor. Based on these findings, L. gelidum, L gasicomitatum, and L. mesenteroides were responsible for spoilage of the vegetable sausage product.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.