The taxonomic position of three strains from water, soil and lettuce samples was studied by using a polyphasic taxonomic approach. The strains were reported to lack the virulence-encoding genes inv and virF in a previous study. Controversially, API 20 E and some other phenotypic tests suggested that the strains belong to Yersinia pseudotuberculosis, which prompted this polyphasic taxonomic study. In both the phylogenetic analyses of four housekeeping genes (glnA, gyrB, recA and HSP60) and numerical analyses of HindIII and EcoRI ribopatterns, the strains formed a separate group within the genus Yersinia. Analysis of the 16S rRNA gene sequences showed that the strains were related to Yersinia aldovae and Yersinia mollaretii, but DNA–DNA hybridization analysis differentiated them from these species. Based on the results of the phylogenetic and DNA–DNA hybridization analyses, a novel species, Yersinia pekkanenii sp. nov., is proposed. The type strain is ÅYV7.1KOH2T ( = DSM 22769T = LMG 25369T).
This study was set up to identify three Gram-negative, rod-shaped strains originating from broiler meat packaged under a modified atmosphere. A polyphasic taxonomic approach, including multilocus sequence analysis (MLSA) of five genes (16S rRNA, glnA, gyrB, recA and HSP60), DNA–DNA reassociation between the closest phylogenetic neighbours and determination of relevant phenotypic properties, was applied. Phylogenetic analysis of the 16S rRNA gene sequences grouped these strains together and within the genus Yersinia. MLSA of the 16S rRNA gene and four housekeeping genes showed that the strains formed a monophyletic group separate from other Yersinia species in all phylogenetic trees constructed. The strains had a phenotypic profile different from those of other representatives of the genus Yersinia, but most similar to that of Yersinia ruckeri. Typical virulence markers for pathogenic Yersinia were not detected. Based on phylogenetic, phenotypic and DNA–DNA reassociation data, a novel species, Yersinia nurmii sp. nov., is proposed for the isolated strains. The type strain is APN3a-cT ( = DSM 22296T = LMG 25213T).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.