Mast cells (MCs) participate in diseases such as systemic mastocytosis (SM) and allergic conditions. Less well understood is the role of MCs in non‐allergic inflammatory disorders like rheumatoid arthritis (RA). Studying definitive roles for MCs in human diseases has been hampered by the lack of a well‐accepted biomarker for monitoring in vivo MC activation. This study aimed to investigate the utility of urinary tetranor PGDM (T‐PGDM) as a biomarker of in vivo MC activation in patients with SM, and apply this biomarker to assess MC involvement in relation to RA disease activity. A prospective, cross‐sectional cohort study was conducted to measure a major urinary metabolite of prostaglandin D2, T‐PGDM. Urine samples were collected from patients with RA (n = 60), SM (n = 17) and healthy normal controls (n = 16) and T‐PGDM excretion was determined by enzyme immunoassay as nanograms per milligram of urinary creatinine (ng/mg Cr). Mean urinary T‐PGDM excretion was significantly higher (p < 0.01) in patients with SM compared to controls (37.2 vs. 11.5 ng/mg Cr) with 65% of SM patients showing elevated levels. One third of patients with RA had elevated T‐PGDM excretion, and the mean level in the RA group (20.0 ng/mg Cr) was significantly higher than controls (p < 0.01). Medications inhibiting cyclooxygenase reduced T‐PGDM excretion. Urinary T‐PGDM excretion appears promising as a biomarker of in vivo MC activity and elevated levels in 33% of patients with RA provides evidence of MC activation in this disease.
Certain viruses have the ability to subvert the mammalian immune response, including interference in the chemokine system. Poxviruses produce the chemokine binding protein vCCI (viral CC chemokine inhibitor; also called 35K), which tightly binds to CC chemokines. To facilitate the study of vCCI, we first provide a protocol to produce folded vCCI from Escherichia coli (E. coli.) It is shown here that vCCI binds with unusually high affinity to viral Macrophage Inflammatory Protein-II (vMIP-II), a chemokine analog produced by the virus, human herpesvirus 8 (HHV-8). Fluorescence anisotropy was used to investigate the vCCI:vMIP-II complex and shows that vCCI binds to vMIP-II with a higher affinity than most other chemokines, having a Kd of 0.06 ± 0.006 nM. Nuclear magnetic resonance (NMR) chemical shift perturbation experiments indicate that key amino acids used for binding in the complex are similar to those found in previous work. Molecular dynamics were then used to compare the vCCI:vMIP-II complex with the known vCCI:Macrophage Inflammatory Protein-1β/CC-Chemokine Ligand 4 (MIP-1β/CCL4) complex. The simulations show key interactions, such as those between E143 and D75 in vCCI/35K and R18 in vMIP-II. Further, in a comparison of 1 μs molecular dynamics (MD) trajectories, vMIP-II shows more overall surface binding to vCCI than does the chemokine MIP-1β. vMIP-II maintains unique contacts at its N-terminus to vCCI that are not made by MIP-1β, and vMIP-II also makes more contacts with the vCCI flexible acidic loop (located between the second and third beta strands) than does MIP-1β. These studies provide evidence for the basis of the tight vCCI:vMIP-II interaction while elucidating the vCCI:MIP-1β interaction, and allow insight into the structure of proteins that are capable of broadly subverting the mammalian immune system.
Despite effective treatment for those living with Human Immunodeficiency Virus (HIV), there are still two million new infections each year. Protein-based HIV entry inhibitors, being highly effective and specific, could be used to protect people from initial infection. One of the most promising of these for clinical use is 5P12-RANTES, a variant of the chemokine RANTES/CCL5. The N-terminal amino acid of 5P12-RANTES is glutamine (Gln; called Q0), a residue that is prone to spontaneous cyclization when at the N-terminus of a protein. It is not known how this cyclization affects the potency of the inhibitor or whether cyclization is necessary for the function of the protein, although the N-terminal region of RANTES has been shown to be critical for receptor interactions, with even small changes having a large effect. We have studied the kinetics of cyclization of 5P12-RANTES as well as N-terminal variations of the protein that either produce an identical cyclized terminus (Glu0) or that cannot similarly cyclize (Asn0, Phe0, Ile0, and Leu0). We find that the half life for N-terminal cyclization of Gln is roughly 20 h at pH 7.3 at 37 °C. However, our results show that cyclization is not necessary for the potency of this protein and that several replacement terminal amino acids produce nearly-equally potent HIV inhibitors while remaining CC chemokine receptor 5 (CCR5) antagonists. This work has ramifications for the production of active 5P12-RANTES for use in the clinic, while also opening the possibility of developing other inhibitors by varying the N-terminus of the protein.
We conducted a preregistered close replication and extension of Studies 1, 2, and 4 in Hsee (1998). Hsee found that when evaluating choices jointly, people compare and judge the option higher on desirable attributes as better (“more is better”). However, when people evaluate options separately, they rely on contextual cues and reference points, sometimes resulting in evaluating the option with less as being better (“less is better”). We found support for “less is better” across all studies (N = 403; Study 1 original d = 0.70 [0.24,1.15], replication d = 0.99 [0.72,1.26]; Study 2 original d = 0.74 [0.12,1.35], replication d = 0.32 [0.07,0.56]; Study 4 original d = 0.97 [0.43,1.50], replication d = 0.76 [0.50,1.02]), with weaker support for “more is better” (Study 2 original d = 0.92 [0.42,1.40], replication dz = 0.33 [.23,.43]; Study 4 original d = 0.37 [0.02,0.72], replication dz = 0.09 [-0.05,0.23]). Some results of our exploratory extensions were surprising, leading to open questions. We discuss remaining implications and directions for theory and measurement relating to economic rationality and the evaluability hypothesis. Materials/data/code: https://osf.io/9uwns/
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.