The transport of Ag(i) across polymer inclusion membranes is reported with derivatives of calixpyrroles with methyl (KP1) and carboxyl (KP2) groups as ion carriers, o-nitrophenyl pentyl ether as a plasticizer and cellulose triacetate as support.
Stricter environmental regulations regarding the discharge of toxic metals require developing various technologies for the removal of these metals from polluted effluents. The removal of toxic metal ions using immobilized membranes with doped ligands is a promising approach for enhancing environmental quality, because of the high selectivity and removal efficiency, high stability, and low energy requirements of the membranes. Cellulose triacetate-based polymer inclusion membranes (PIMs), with calix[4]resorcinarene derivative as an ion carrier, were analyzed to determine their ability for removal of Pb(II) ions from aqueous solutions. The effects of ion carrier concentration, plasticizer amount, pH of source aqueous phase, and receiving agents on the effective transport of Pb(II) were determined. All studied parameters were found to be important factors for the transport of Pb(II) ions. The PIM containing calix[4]resorcinarene derivative as an ion carrier showed high stability and excellent transport activity for selective removal of Pb(II) from the battery industry effluent, with a separation efficiency of 90%.
A hyper-crosslinked resin chemically modified with thiourea (TM-HPS) was synthesized, characterized, and evaluated for the removal of heavy metal ions (Pb 21 , Cd 21 , and Cu 21) from aqueous solutions. The structural characterization results showed that a few thiourea groups were grafted on the surface of the resin with a big BET surface area and a large number of narrow micropores. Various experimental conditions such as pH, contact time, temperature, and initial metal concentration of the three heavy metal ions onto TM-HPS were investigated systematically. The results indicated that the prepared resin was effective for the removal of the heavy metal ions from aqueous solutions. The isotherm data could be better fitted by Langmuir model, yielding maximum adsorption capacities of 689.65, 432.90, and 290.69 mg/g for Pd 21 , Cd 21 , and Cu 21 , respectively. And the adsorption kinetics of the three metal ions followed the pseudo-second-order equation. FTIR and XPS analysis of TM-HPS before and after adsorption further revealed that the adsorption mechanism could be a synergistic effect between functional groups and metal ions and electrostatic attraction, which may provide a new insight into the design of highly effective adsorbents and their potential technological applications for the removal of heavy metal ions from aqueous solutions.
Icosacerium nonadecamagnesium henoctacontazinc, Ce(20)Mg(19)Zn(81), synthesized by fritting of the pure elements with subsequent arc melting, crystallizes with an unusually large cubic unit cell [space group F\overline{4}3m, a = 21.1979 (8) A] and represents a new structure type among the technologically important family of ternary rare earth-transition metal-magnesium intermetallics. The majority of atoms (two Ce and five Zn) display .3m site symmetry, two Ce and one Mg atom occupy three 2.mm positions, one Mg and one Zn have \overline{4}3m site symmetry, one Mg and three Zn atoms sit in ..m positions, and one Zn atom is in a general position. The Ce(20)Mg(19)Zn(81) structure can be described using the geometric concept of nested polyhedral units, by which it consists of four different polyhedral units, viz. A (Zn+Zn(4)+Zn(4)+Zn(12)+Ce(6)), B (Mg+Zn(12)+Ce(4)+Zn(24)+Ce(4)), C (Zn(4)+Zn(12)+Mg(6)) and D (Zn(4)+Zn(4)+Mg(12)+Ce(6)), with the outer construction unit being an octahedron or tetrahedron. All interatomic distances in the structure indicate metallic-type bonding.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.