Classical density functional theory (DFT) of inhomogeneous fluids is applied to an explicit solvent "semi-primitive" model (SPM) of ionic solutions to investigate the influence of ionic solutes on the wetting behaviour of a solvent in contact with a neutral or charged planar substrate. The SPM is made up of 3 species of hard sphere particles with different diameters, interacting via an attractive Yukawa potential to model excluded volume and cohesion. The solvent particles are neutral, while the monovalent anions and cations are oppositely charged. The polar nature of the solvent is modeled by a continuum dielectric permittivity linked to the local solvent density. All 3 species interact with the impenetrable substrate via an attractive external potential. While excluded volume effects are accurately described by a Rosenfeld "fundamental measure" free energy functional, the short range Yukawa attraction and Coulombic interactions are treated within the mean-field approximation. The ionic solutes are found to have a significant impact on the wetting behaviour of the solvent, in particular on the wetting temperature. Strong electric fields, or long-ranged (weakly screened) Coulombic forces are shown to have the propensity to change the wetting transition from second to first order. The cation-anion size asymmetry leads to charge separation on the liquid-vapour interface of the solution, which in turn can induce a drying transition on the liquid side of liquid-vapour coexistence.
We use classical density functional theory (DFT) and an explicit solvent description to investigate the wetting and drying behavior of ionic solutions in contact with a charged solid substrate. The solvent is modeled by dipolar hard spheres, while the monovalent ions are oppositely charged hard spheres; cohesion is ensured by a Yukawa attraction between all three species. The free energy functional describing the inhomogeneous solution includes the best available fundamental measure description of excluded volume correlations in a ternary mixture of hard spheres, whereas all electrostatic and cohesive interactions are treated within the mean-field approximation. We find both first and second order wetting transitions which are rather little affected by ions at low and moderate concentrations, compared to the wetting behavior of the pure solvent. A novel drying scenario is predicted, where complete drying is prevented by the electrostatic attraction between a positively charged substrate and the anions, while near a negatively charged substrate, a first order transition with a predrying line is observed. The various scenarios are surprisingly similar to our previous predictions based on a "semiprimitive" model where the solvent particles carry no dipole, but the ion-ion interactions are reduced by a local dielectric permittivity.
We investigate the liquid-vapor interface of a model of patchy colloids. This model consists of hard spheres decorated with short-ranged attractive sites ("patches") of different types on their surfaces. We focus on a one-component fluid with two patches of type A and nine patches of type B (2A9B colloids), which has been found to exhibit reentrant liquid-vapor coexistence curves and very low-density liquid phases. We have used the density-functional theory form of Wertheim's first-order perturbation theory of association, as implemented by Yu and Wu [J. Chem. Phys. 116, 7094 (2002)], to calculate the surface tension, and the density and degree of association profiles, at the liquid-vapor interface of our model. In reentrant systems, where AB bonds dominate, an unusual thickening of the interface is observed at low temperatures. Furthermore, the surface tension versus temperature curve reaches a maximum, in agreement with Bernardino and Telo da Gama's mesoscopic Landau-Safran theory [Phys. Rev. Lett. 109, 116103 (2012)]. If BB attractions are also present, competition between AB and BB bonds gradually restores the monotonic temperature dependence of the surface tension. Lastly, the interface is "hairy," i.e., it contains a region where the average chain length is close to that in the bulk liquid, but where the density is that of the vapor. Sufficiently strong BB attractions remove these features, and the system reverts to the behavior seen in atomic fluids.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.