Epithelial ovarian cancer (EOC) is one of the most malignant gynecological tumors with a high mortality rate owing to tumor relapse after anticancer therapies. It is widely accepted that a rare tumor cell population, known as cancer stem cells (CSC), is responsible for tumor progression and relapse; intriguingly, these cells are able to survive nutrient starvation (such as in vitro culture in the absence of glucose) and chemotherapy treatment. Recent data also indicated that chemotherapy resistance is associated with autophagy activation. We thus decided to investigate both in vitro and in vivo the autophagic activity and the effects of the perturbation of this pathway in CSC isolated from EOC ascitic effusions. Ovarian CSC, identified according to their CD44/CD117 co-expression, presented a higher basal autophagy compared with the non-stem counterpart. Inhibition of this pathway, by in vitro chloroquine treatment or CRISPR/Cas9 ATG5 knockout, impaired canonical CSC properties, such as viability, the ability to form spheroidal structures in vitro, and in vivo tumorigenic potential. In addition, autophagy inhibition showed a synergistic effect with carboplatin administration on both in vitro CSC properties and in vivo tumorigenic activity. On the whole, these results indicate that the autophagy process has a key role in CSC maintenance; inhibition of this pathway in combination with other chemotherapeutic approaches could represent a novel effective strategy to overcome drug resistance and tumor recurrence. Cell Death and Disease (2017) 8, e2943; doi:10.1038/cddis.2017.327; published online 20 July 2017Epithelial ovarian cancer (EOC) is the leading cause of death from gynecological malignancies and the fifth leading cause of all cancer-related deaths among women in the Western world.1 Early diagnosis of ovarian carcinoma has proved difficult to achieve, largely owing to lack of an identified pre-malignant precursor lesion, and owing to the anatomical location of the ovaries.2 Indeed, the symptoms associated with this malignancy are shared with several other more common gynecologic, gastrointestinal and urinary pathologies. To date, no validated screening test exists as CA-125 dosage, pelvic and transvaginal sonography have very low sensitivity and specificity.3 As a consequence,~75% of patients present with signs of metastatic spread at the time of diagnosis, and~80% of women with advanced disease have a 5-year survival rate of only 30%. 4 In the last two decades, much effort has been spent in employing more effective surgery and combination treatment regimens, typically platinum-and taxane-based, resulting in complete response in 70% of patients.5 Despite these results, most patients relapse within 18 months with chemo-resistant disease.One emerging model for the development of drug-resistant carcinomas suggests that a pool of self-renewing malignant progenitor cells exists. These rare cancer-initiating cells, also named cancer stem cells (CSC), present several features that confer chemoresistance, such as the e...
Inhibitor of apoptosis-stimulating protein of p53 (iASPP) is the most ancient member of the ASPP family of proteins and an evolutionarily conserved inhibitor of p53. iASPP is also a binding partner and negative regulator of p65RelA. Because p65RelA and the p53 family members often have opposite effects in controlling cell fate, it is important to understand the cellular context in which iASPP can regulate their activities. To address this question and to study the biological importance of iASPP in vivo, we generated a transgenic mouse in which iASPP expression is controlled by the Cre/loxP recombination system. We observed that iASPP is able to prevent premature cellular senescence in mouse embryonic fibroblasts. iASPP loss resulted in increased differentiation of primary keratinocytes both in vitro and in vivo. In stratified epithelia, nuclear iASPP often colocalized with p63 in the nuclei of basal keratinocytes. Consistent with this, iASPP bound p63 and inhibited the transcriptional activity of both TAp63α and ΔNp63α in vitro and influenced the expression level of p63-regulated genes such as loricrin and involucrin in vivo. In contrast, under the same conditions, p65RelA was frequently expressed as a cytoplasmic protein in the suprabasal layers of stratified epithelia and rarely colocalized with nuclear iASPP. Thus, iASPP is likely to control epithelial stratification by regulating p63's transcriptional activity, rather than p65RelA's. This study identifies iASPP as an inhibitor of senescence and a key player in controlling epithelial stratification.
Squamous cell carcinoma (SCC) is highly malignant and refractory to therapy. The majority of existing mouse SCC models involve multiple gene mutations. Very few mouse models of spontaneous SCC have been generated by a single gene deletion. Here we report a haploinsufficient SCC mouse model in which exon 3 of the Tp53BP2 gene (a p53 binding protein) was deleted in one allele in a BALB/c genetic background. Tp53BP2 encodes ASPP2 (ankyrin repeats, SH3 domain and protein rich region containing protein 2). Keratinocyte differentiation induces ASPP2 and its expression is inversely correlated with p63 protein in vitro and in vivo. Upregulation of p63 expression is required for ASPP2 Δexon3/+ BALB/c mice to develop SCC, as heterozygosity of p63 but not p53 prevents them from developing it. Mechanistically, ASPP2 inhibits ΔNp63 expression through its ability to bind IκB and enhance nuclear Rel/A p65, a component of the NF-κB transcription complex, which mediates the repression of p63. Reduced ASPP2 expression associates with tumor metastasis and increased p63 expression in human head and neck SCCs. This study identifies ASPP2 as a tumor suppressor that suppresses SCC via inflammatory signaling through NF-κB-mediated repression of p63.inflammation | T53BP2 | stratified epithelial cell tumor
Receptors tyrosine kinase (RTK) enable normal and tumor cells to perceive and adapt to stimuli present in the microenvironment. These stimuli, also known as growth factors, are important molecular cues actively supporting cancer stem cell (CSC) self-renewal and viability. Since in epithelial ovarian cancer (EOC) the expression of c-Kit (CD117) has been identified as a CSC hallmark, we investigated the existence of a tumor growth-promoting loop between c-Kit and its ligand Stem Cell Factor (SCF). SCF exists as a soluble or transmembrane protein and through c-Kit interaction regulates cell viability, proliferation, and differentiation both in physiological and pathological conditions. High amounts of SCF were found in the ascitic effusions collected from EOC patients. While tumor cells and CSC only expressed the membrane-associated SCF isoform, both secreted and membrane-bound isoforms were expressed by tumor-associated macrophages (TAM, here shown to be M2-like) and fibroblasts (TAF). Circulating monocytes from EOC-bearing patients and healthy donors did not express both SCF isoforms. However, monocytes isolated from healthy donors produced SCF upon in vitro differentiation into macrophages, irrespectively of M1 or M2 polarization. In vitro, both SCF isoforms were able to activate the Akt pathway in c-Kit + cells, and this effect was counteracted by the tyrosine kinase inhibitor imatinib. In addition, our results indicated that SCF could help c-Kit + CSC survival in selective culture conditions and promote their canonical stemness properties, thus indicating the possible existence of a juxtacrine/paracrine circuit in EOC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.