Efficient execution of apoptotic cell death followed by efficient clearance mediated by professional macrophages is a key mechanism in maintaining tissue homeostasis. Removal of apoptotic cells usually involves three central elements: (1) attraction of phagocytes via soluble `find me' signals, (2) recognition and phagocytosis via cell surface presenting `eat me' signals, and (3) suppression or initiation of inflammatory responses depending on additional innate immune stimuli. Suppression of inflammation involves both direct inhibition of pro-inflammatory cytokine production and release of anti-inflammatory factors, which all contribute to the resolution of inflammation. In the present study, using wild type and adenosine A2A receptor (A2AR) null mice, we investigated whether A2ARs, known to mediate anti-inflammatory signals in macrophages, participate in the apoptotic cell-mediated immunosuppression. We found that macrophages engulfing apoptotic cells release adenosine in sufficient amount to trigger A2ARs, and simultaneously increase the expression of A2ARs, possibly via activation of activation of liver X receptor and peroxisome proliferators activated receptor δ. In macrophages engulfing apoptotic cells, stimulation of A2ARs suppresses the NO-dependent formation of neutrophil migration factors, such as macrophage inflammatory protein-2, using the adenylate cyclase / protein kinase A pathway. As a result, loss of A2ARs results in elevated chemoattractant secretion. This was evident as pronounced neutrophil migration upon exposure of macrophages to apoptotic cells in an in vivo peritonitis model. Altogether our data indicate that adenosine is one of the soluble mediators released by macrophages that mediate engulfment-dependent apoptotic cell suppression of inflammation.
TNF-α, a potent proinflammatory cytokine, is generated in a precursor form called transmembrane (m)TNF-α that is expressed as a type II polypeptide on the surface of certain cells. mTNF-α was shown to act both as a ligand by binding to TNF-α receptors, as well as a receptor that transmits outside-to-inside (reverse) signals back into the mTNF-α–bearing cells. In this study, we show that nonactivated macrophages express basal levels of mTNF-α and respond to anti–TNF-α Abs by triggering the MAPK kinase 4 signaling pathway. The pathway induces TGF-β. Based on inhibitory experiments, the production of TGF-β1 is regulated via Jun kinases, whereas that of other TGF-βs is regulated via p38 MAPKs. Exposure to LPS further induced the expression of mTNF-α, and triggering of mTNF-α strongly suppressed the LPS-induced proinflammatory response. Neutralizing TGF-β by Abs prevented the mTNF-α–mediated suppression of LPS-induced proinflammatory cytokine formation, indicating that the immune-suppressive effect of mTNF-α is mediated via TGF-β. Although apoptotic cells are also known to suppress LPS-induced proinflammatory cytokine formation in macrophages by upregulating TGF-β, we show that they do not use the mTNF-α signaling pathway. Because TGF-β possesses a wide range of immune-suppressive effects, our data indicate that upregulation of TGF-β synthesis by those TNF-α–targeting molecules, which are able to trigger mTNF-α, might contribute to their therapeutic effect in the treatment of certain inflammatory diseases such as Crohn’s disease, Wegener’s granulomatosis, or sarcoidosis. Additionally, none of the TNF-α–targeting molecules is expected to interfere with the immune-silencing effects of apoptotic cells.
IntroductionTransglutaminase 2 (TG2), a protein crosslinking enzyme with multiple biochemical functions, has been connected to various inflammatory processes. In this study, the involvement of TG2 in monosodium urate (MSU) crystal-induced inflammation was studied.MethodsImmunohistochemistry, reverse transcription-polymerase chain reaction (RT-PCR) were performed to detect TG2 expression in synovial fluid mononuclear cells (SFMCs) and synovial tissue from patients with gouty arthritis. MSU crystal-exposed RAW264.7 mouse macrophages were analyzed for interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), transforming growth factor β1 (TGF-β1) and TG2 expression by RT-PCR and enzyme-linked immunosorbent assay (ELISA). TG2 small interfering (si)-RNA-mediated silencing and overexpression in RAW264.7 cells were used to evaluate the involvement of TG2 in resolving MSU crystal-induced inflammation. The role of metastatic tumor antigen 1 (MTA1), a master chromatin modifier, was investigated by MTA1 si-RNA-mediated knockdown. In addition, the inflammatory responses were followed in wild type and TG2 null mice after being challenged with MSU crystals in an in vivo peritonitis model.ResultsTG2 expression was up-regulated in the synovium tissue and SFMCs from patients with gouty arthritis. The levels of MTA1, TG2, TGF-β1, IL-1β and TNF-α mRNAs were consistently increased in MSU crystal-stimulated RAW264.7 cells. si-MTA1 impaired the basal, as well as the MSU crystal-induced expression of TG2 and TGF-β1, but increased that of IL-1β and TNF-α. TG2 overexpression dramatically suppressed MSU crystal-induced IL-1β and TNF-α, but significantly enhanced the TGF-β1 production. Neutralizing TGF-β antibodies or inhibition of the crosslinking activity of TG2 attenuated these effects. On the contrary, loss of TG2 resulted in a reduced TGF-β, but in an increased IL-1β and TNF-α production in MSU crystal-stimulated RAW264.7 cells and mouse embryonic fibroblasts (MEFs). MSU crystal-stimulated IL-1β production was Janus kinase 2 (JAK2)-signaling dependent and TG2-induced TGF-β suppressed the activity of it. Finally, TG2-deficient mice exhibited hyper inflammatory responses after being challenged with MSU crystals in an in vivo peritonitis model.ConclusionsThese findings reveal an inherent regulatory role of the MTA1-TG2 pathway in the self-limitation of MSU crystal-induced inflammation via positively regulating the levels of active TGF-β1 in macrophages that opposes the MSU crystal-induced JAK2-dependent pro-inflammatory cytokine formation.Electronic supplementary materialThe online version of this article (doi:10.1186/s13075-015-0592-7) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.