Background During the ongoing coronavirus disease COVID-19 pandemic, many individuals were infected with and have cleared the virus, developing virus-specific antibodies and effector/memory T cells. An important unanswered question is what levels of T cell and antibody responses are sufficient to protect from the infection. Methods In 5340 Moscow residents, we evaluated anti-SARS-CoV-2 IgM/IgG titers and frequencies of the T cells specific to the membrane, nucleocapsid, and spike proteins of SARS-CoV-2, using IFNγ ELISpot assay. Additionally, we evaluated the fractions of virus-specific CD4+ and CD8+ T cells using intracellular staining of IFNγ and IL2 followed by flow cytometry. We analyzed the COVID-19 rates as a function of the assessed antibody and T cell responses, using the Kaplan-Meyer estimator method, for up to 300 days post-inclusion. Results We showed that T cell and antibody responses are closely interconnected and are commonly induced concurrently. Magnitudes of both responses inversely correlated with infection probability. Individuals positive for both responses demonstrated the highest levels of protectivity against the SARS-CoV-2 infection. A comparable level of protection was found in individuals with antibody response only, while the T cell response by itself granted only intermediate protection. Conclusions We found that the contribution of the virus-specific antibodies to protection against the SARS-CoV-2 infection is more pronounced than that of the T cells. The data on the virus-specific IgG titers may be instructive for making decisions in personalized health care and public anti-COVID-19 policies.
BackgroundCoronavirus disease COVID-19 has spread worldwide extremely rapidly. Although many individuals have been infected and have cleared the virus, developing virus-specific antibodies and effector/memory T cells, an important question still to be answered is what levels of T cell and antibody responses are sufficient to protect from the infection.MethodsIn 5,340 Moscow residents, we evaluated the anti-SARS-CoV-2 IgM/IgG titers and the frequencies of the T cells specific to the nucleocapsid, membrane, and spike proteins of SARS-CoV-2, using IFNγ ELISpot, and we also evaluated the fractions of virus-specific CD4+ and CD8+ T cells using intracellular staining of IFNγ and IL2 followed by flow cytometry. Furthermore, we analyzed the post-inclusion COVID-19 rates as a function of the assessed antibody and T cell responses using the Kaplan-Meyer estimator method.ResultsWe showed that T cell and antibody responses are closely interconnected and commonly are induced concurrently. Individuals positive for both antibody and T cell immunities demonstrated the highest levels of protectivity against the SARS-CoV-2 infection, indistinguishably from individuals with antibody response only. Meanwhile, individuals with T cell response only demonstrated slightly higher protectivity than individuals without both types of immunity, as measured from N-protein–specific or CD4+IL2+ T cells. However, these individuals were characterized by higher IgG titers than individuals without any immunity, although the titers were below the seropositivity cut-off.ConclusionsThe results of the study indicated the advantage of serology testing over the analysis of T cell responses for the prediction of SARS-CoV-2 infection rates on a populational level.
Mycobacterium tuberculosis Beijing genotype associated with drug resistance is a growing public health problem worldwide. The aim of this study was the assessment of virulence for C57BL/6 mice after infection by clinical M. tuberculosis strains 267/47 and 120/26, which belong to the modern sublineages B0/W148 and Central Asia outbreak of the Beijing genotype, respectively. The sublineages were identified by the analysis of the strains’ whole-genomes. The strains 267/47 and 120/26 were characterized as agents of pre-extensively drug-resistant (pre-XDR) and multidrug-resistant (MDR) tuberculosis, respectively. Both clinical strains were slow-growing in 7H9 broth compared to the M. tuberculosis H37Rv strain. The survival rates of C57BL/6 mice infected by 267/47, 120/26, and H37Rv on the 150th day postinfection were 10%, 40%, and 70%, respectively. Mycobacterial load in the lungs, spleen, and liver was higher and histopathological changes were more expressed for mice infected by the 267/47 strain compared to those infected by the 120/26 and H37Rv strains. The cytokine response in the lungs of C57BL/6 mice after infection with the 267/47, 120/26, and H37Rv strains was different. Notably, proinflammatory cytokine genes Il-1α, Il-6, Il-7, and Il-17, as well as anti-inflammatory genes Il-6 and Il-13, were downregulated after an infection caused by the 267/47 strain compared to those after infection with the H37Rv strain.
IntroductionThe tuberculin skin test has significant limitations for use in individuals vaccinated with BCG. The presence in the genome of Mycobacterium tuberculosis of the RDI region, which is absent in the genome of Mycobacterium bovis BCG and most non-tuberculous mycobacteria, made it possible to develop new skin tests, which include a skin test with a recombinant tuberculosis allergen [RTA (Diaskintest®, JSC Generium, Russia)]. Diaskintest has shown high diagnostic performance in clinical trials and in conditions of high prevalence of tuberculosis infection. In 2021, the Russia was excluded from the WHO list of high TB burden countries, which makes relevant an assessment of the specificity of the RTA test under conditions of low epidemiologic risk for tuberculosis to confirm the high specificity of the test.Study objectiveTo assess the specificity of Diaskintest in the regions of the Russian Federation with low epidemiologic risk for tuberculosis.MethodsA multicenter, open-label, prospective study was conducted, which included 150 healthy volunteers aged 18–30 years old, vaccinated with BCG, who were not at risk of tuberculosis, from regions with low epidemiologic risk (Oryol region, Ryazan region, and Arkhangelsk region). During the study, 4 visits were scheduled for each participant: [Visit 0 (screening), Visit 1, Visit 2 (in 72 h) and Visit 3 (in 28 days)]. All participants, who excluded active and latent tuberculosis infection, underwent a test with RTA. To assess the safety of RTA tests, all systemic and local adverse events that occurred during 28 days were recorded. The trial was filed in the NIH clinical trials database ClinicalTrials.gov (NCT05203068).ResultsIn individuals with a negative T-SPOT.TB test, the specificity of the RTA test was 97% (95% CI: 92–99%) with a cut-off of >0 mm. The study findings confirm data 2009: 100.00 (95% CI: 94–100). When evaluating the safety of the RTA test during 28 days of follow-up, the participants did not report local and systemic adverse reactions that had a causal relationship with the RTA test.ConclusionDiaskintest is highly specific and safe, therefore it is a valuable tool as a screening test for early detection of tuberculosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.