The world is changing, and university education must be able to adapt to it. New technologies such as artificial intelligence and robotics are requiring tools such as simulation and process control to develop products and services. Thus, control systems engineering schools are adapting to new educational frameworks tailored to deploy promising and feasible new technologies. Herein, we have relied on computer animation-based education and its implementation as an online project-based strategy to attain the objectives and goals of the control systems engineering courses at University of Los Andes, Venezuela. The ControlAnimation library developed in Mathematica program in 2002 has been used as a tool to teach control systems engineering courses since 2008 and with greater prominence since 2020, when the stay-at-home orders due to the COVID-19 pandemic were enacted. Consequently, computer animation-based education has proven its feasibility as an online tool combined with project-based learning techniques, thus allowing students to interact with an animated control system by changing the mathematical model and the design parameters of control laws in a comfortable and somewhat playful way. This enabled new capabilities to study the dynamic behaviors of primordial control systems online. In addition, it allowed students to co-identify and relate in a more intuitive way to the mathematical models and control equations with the physical behavior of the real control systems.
The overall stability of a self-tuning controller for discrete-time systems is proved by using the Lyapunov function in this paper, for minimum and a class of non-minimum phase systems. The self-tuning controller utilizes a recursive estimate algorithm for the controller parameters based on the generalized minimum variance criterion. Previously, the stability had been proved in the case of minimum phase systems. A new type of self-tuning controller for the discrete-time system with delay in control input is also studied which is named the generalized minimum variance criterion-equivalent control, and its stability is proved. The simulation is done to evaluate the performance of the proposed self-tuning controller.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.