Generation of reactive oxygen species (ROS) is the hallmark of important biological processes and photodynamic therapy (PDT), where ROS production results from in situ illumination of certain dyes. Here we test the hypothesis that the yield, fate, and efficacy of the species evolved highly depend on the dye's environment. We show that Pd-bacteriopheophorbide (Pd-Bpheid), a useful reagent for vascular targeted PDT (VTP) of solid tumors, which has recently entered into phase II clinical trials under the code name WST09 (trade name TOOKAD), forms appreciable amounts of hydroxyl radicals, superoxide radicals, and probably hydrogen peroxide in aqueous medium but not in organic solvents where singlet oxygen almost exclusively forms. Evidence is provided by pico- and nanosecond time-resolved spectroscopies, ESR spectroscopy with spin-traps, time-resolved singlet oxygen phosphorescence, and chemical product analysis. The quantum yield for singlet oxygen formation falls from approximately 1 in organic solvents to approximately 0.5 in membrane-like systems (micelles or liposomes), where superoxide and hydroxyl radicals form at a minimal quantum yield of 0.1%. Analysis of photochemical products suggests that the formation of oxygen radicals involves both electron and proton transfer from (3)Pd-Bpheid at the membrane/water interface to a colliding oxygen molecule, consequently forming superoxide, then hydrogen peroxide, and finally hydroxyl radicals, with no need for metal catalysis. The ability of bacteriochlorophyll (Bchl) derivatives to form such radicals upon excitation at the near infrared (NIR) domain opens new avenues in PDT and research of redox regulation in animals and plants.
Photodynamic therapy (PDT) employs the combination of nontoxic photosensitizers (PS) and harmless visible light to generate reactive oxygen species (ROS) and kill cells. Most clinically studied PS are based on the tetrapyrrole structure of porphyrins, chlorines, and related molecules, but new nontetrapyrrole PS are being sought. Fullerenes are soccer-ball shaped molecules composed of 60 or 70 carbon atoms and have attracted interest in connection with the search for biomedical applications of nanotechnology. Fullerenes are biologically inert unless derivatized with functional groups, whereupon they become soluble and can act as PS. We have compared the photodynamic activity of six functionalized fullerenes with 1, 2, or 3 hydrophilic or 1, 2, or 3 cationic groups. The octanol-water partition coefficients were determined and the relative contributions of Type I photochemistry (photogeneration of superoxide in the presence of NADH) and Type II photochemistry (photogeneration of singlet oxygen) were studied by measurement of oxygen consumption, 1270-nm luminescence and EPR spin trapping of the superoxide product. We studied three mouse cancer cell lines: (J774, LLC, and CT26) incubated for 24 h with fullerenes and illuminated with white light. The order of effectiveness as PS was inversely proportional to the degree of substitution of the fullerene nucleus for both the neutral and the cationic series. The monopyrrolidinium fullerene was the most active PS against all cell lines and induced apoptosis 4-6 h after illumination. It produced diffuse intracellular fluorescence when dichlorodihydrofluorescein was added as an ROS probe, suggesting a Type I mechanism for phototoxicity. We conclude that certain functionalized fullerenes have potential as novel PDT agents and phototoxicity may be mediated both by superoxide and by singlet oxygen.
Free electron laser-photoelectron emission microscopy (FEL-PEEM), femtosecond absorption spectroscopy and electron paramagnetic resonance (EPR) measurements of oxygen photoconsumption were used to probe the threshold potential for ionization of eumelanosomes and pheomelanosomes isolated from human hair. FEL-PEEM data show that both pigments are characterized by an ionization threshold at 282 nm. However, pheomelanosomes exhibit a second ionization threshold at 326 nm, which is interpreted to be reflective of the benzothiazine structural motif present in pheomelanin and absent in eumelanin. The lower ionization threshold for pheomelanin is supported by femtosecond transient absorption spectroscopy. Unlike photolysis at 350 nm, following excitation of solubalized synthetic pheomelanin at 303 nm, the transient spectrum observed between 500 and 700 nm matches that for the solvated electron, indicating the photoionization threshold for the solubalized pigment is between 350 and 303 nm. For the same synthetic pheomelanin, EPR oximetry experiments reveal an increased rate of oxygen uptake between 338 nm and 323 nm, narrowing the threshold for photoionization to sit between these two wavelengths. These results on the solubalized synthetic pigment are consistent with the FEL-PEEM results on the human melanosomes. The lower ionization potential observed for pheomelanin could be an important part of the explanation for the greater incidence rate of UV-induced skin cancers in red-haired individuals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.