Many different definitions for multidrug-resistant (MDR), extensively drug-resistant (XDR) and pandrug-resistant (PDR) bacteria are being used in the medical literature to characterize the different patterns of resistance found in healthcare-associated, antimicrobial-resistant bacteria. A group of international experts came together through a joint initiative by the European Centre for Disease Prevention and Control (ECDC) and the Centers for Disease Control and Prevention (CDC), to create a standardized international terminology with which to describe acquired resistance profiles in Staphylococcus aureus, Enterococcus spp., Enterobacteriaceae (other than Salmonella and Shigella), Pseudomonas aeruginosa and Acinetobacter spp., all bacteria often responsible for healthcare-associated infections and prone to multidrug resistance. Epidemiologically significant antimicrobial categories were constructed for each bacterium. Lists of antimicrobial categories proposed for antimicrobial susceptibility testing were created using documents and breakpoints from the Clinical Laboratory Standards Institute (CLSI), the European Committee on Antimicrobial Susceptibility Testing (EUCAST) and the United States Food and Drug Administration (FDA). MDR was defined as acquired non-susceptibility to at least one agent in three or more antimicrobial categories, XDR was defined as non-susceptibility to at least one agent in all but two or fewer antimicrobial categories (i.e. bacterial isolates remain susceptible to only one or two categories) and PDR was defined as non-susceptibility to all agents in all antimicrobial categories. To ensure correct application of these definitions, bacterial isolates should be tested against all or nearly all of the antimicrobial agents within the antimicrobial categories and selective reporting and suppression of results should be avoided.
The blaESBL and blaAmpC genes in Enterobacteriaceae are spread by plasmid-mediated integrons, insertion sequences, and transposons, some of which are homologous in bacteria from food animals, foods, and humans. These genes have been frequently identified in Escherichia coli and Salmonella from food animals, the most common being blaCTX-M-1, blaCTX-M-14, and blaCMY-2. Identification of risk factors for their occurrence in food animals is complex. In addition to generic antimicrobial use, cephalosporin usage is an important risk factor for selection and spread of these genes. Extensive international trade of animals is a further risk factor. There are no data on the effectiveness of individual control options in reducing public health risks. A highly effective option would be to stop or restrict cephalosporin usage in food animals. Decreasing total antimicrobial use is also of high priority. Implementation of measures to limit strain dissemination (increasing farm biosecurity, controls in animal trade, and other general postharvest controls) are also important.
BackgroundInfections with carbapenem-resistant Enterobacteriaceae (CRE) are increasingly being reported from patients in healthcare settings. They are associated with high patient morbidity, attributable mortality and hospital costs. Patients who are “at-risk” may be carriers of these multidrug-resistant Enterobacteriaceae (MDR-E).The purpose of this guidance is to raise awareness and identify the “at-risk” patient when admitted to a healthcare setting and to outline effective infection prevention and control measures to halt the entry and spread of CRE.MethodsThe guidance was created by a group of experts who were functioning independently of their organisations, during two meetings hosted by the European Centre for Disease Prevention and Control. A list of epidemiological risk factors placing patients “at-risk” for carriage with CRE was created by the experts. The conclusions of a systematic review on the prevention of spread of CRE, with the addition of expert opinion, were used to construct lists of core and supplemental infection prevention and control measures to be implemented for “at-risk” patients upon admission to healthcare settings.ResultsIndividuals with the following profile are “at-risk” for carriage of CRE: a) a history of an overnight stay in a healthcare setting in the last 12 months, b) dialysis-dependent or cancer chemotherapy in the last 12 months, c) known previous carriage of CRE in the last 12 months and d) epidemiological linkage to a known carrier of a CRE.Core infection prevention and control measures that should be considered for all patients in healthcare settings were compiled. Preliminary supplemental measures to be implemented for “at-risk” patients on admission are: pre-emptive isolation, active screening for CRE, and contact precautions. Patients who are confirmed positive for CRE will need additional supplemental measures.ConclusionsStrengthening the microbiological capacity, surveillance and reporting of new cases of CRE in healthcare settings and countries is necessary to monitor the epidemiological situation so that, if necessary, the implemented CRE prevention strategies can be refined in a timely manner. Creating a large communication network to exchange this information would be helpful to understand the extent of the CRE reservoir and to prevent infections in healthcare settings, by applying the principles outlined here.This guidance document offers suggestions for best practices, but is in no way prescriptive for all healthcare settings and all countries. Successful implementation will result if there is local commitment and accountability. The options for intervention can be adopted or adapted to local needs, depending on the availability of financial and structural resources.Electronic supplementary materialThe online version of this article (10.1186/s13756-017-0259-z) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.